Optimization - Exercises

Day 1

Let $(H,\langle\cdot, \cdot\rangle)$ be a real Hilbert space. We denote $\|\cdot\|$ the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show that if x is a local minimizer of f, then

$$
\begin{aligned}
& \nabla f(x)=0 \\
& \nabla^{2} f(x) \geq 0
\end{aligned}
$$

Is the first order condition a sufficient condition for x to be a local minimizer? If no, give an example. What assumption can you make for this condition to be an equivalence?

Exercise 2 (Caracterizations of convex functions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show the following equivalences :

1. f is convex if, and only if,

$$
\forall(x, y) \in H \times H, f(y) \geqslant f(x)+\langle\nabla f(x) \mid y-x\rangle
$$

2. f is convex if, and only if,

$$
\forall x \in H, \quad \nabla^{2} f(x) \geq 0
$$

where $\nabla^{2} f(x)$ is the hessian of f at x.

Exercise 3 (Squared distance function).

Let A be a nonempty closed convex subset of H. We consider the function "squared distance to A " defined for all $x \in H$ by

$$
g(x)=\inf _{y \in A}\|x-y\|^{2}
$$

1. Show that g is convex.
2. Show that g is Fréchet differentiable, with $\nabla g(x)=2\left(x-\mathrm{p}_{A}(x)\right)$, where p_{A} denotes the projection on A.

Exercise 4 (Minimization of a quadratic function).

Let $A \in \mathcal{S}_{n}^{++}(\mathbb{R})$ (set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$) and $b \in \mathbb{R}^{n}$. Let f be defined for all $x \in \mathbb{R}^{n}$ by

$$
f(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle .
$$

Show that f admits a unique minimizer and give an expression of this minimizer.

Exercise 5 (Convex optimization exam 2019).

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a convex, differentiable and bounded function on \mathbb{R}^{n}. Show f is constant.

Exercise 6 (About ε-minimizers).

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous function bounded from below on \mathbb{R}^{n}. Let $\varepsilon>0$ and u a ε-minimizer of f, i.e. u satisfies

$$
f(u) \leqslant \inf _{x \in \mathbb{R}^{n}} f(x)+\varepsilon
$$

Let $\lambda>0$ and consider

$$
g: x \in \mathbb{R}^{n} \mapsto g(x):=f(x)+\frac{\varepsilon}{\lambda}\|x-u\| .
$$

1. Show there exists $v \in \mathbb{R}^{n}$ which minimizes g on \mathbb{R}^{n}. Show this point v satisfies the following conditions :
(i) $f(v) \leqslant f(u)$,
(ii) $\|u-v\| \leqslant \lambda$,
(iii) $\forall x \in \mathbb{R}^{n}, f(v) \leqslant f(x)+\frac{\varepsilon}{\lambda}\|x-v\|$.
2. Suppose in addition that f is differentiable on \mathbb{R}^{n}. Show that for all $\epsilon>0$, there exists $x_{\epsilon} \in \mathbb{R}^{n}$ such that

$$
\left\|\nabla f\left(x_{\epsilon}\right)\right\| \leqslant \epsilon
$$

Exercise 7.

Let $\mathcal{O}=\mathcal{S}_{n}^{++}(\mathbb{R})$ be the (open) set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$. \mathcal{O} is endowed with the scalar product $\langle U, V\rangle=\operatorname{Tr}(U V)$. Let $A \in \mathcal{O}$ and f be defined for all $X \in \mathcal{O}$ by

$$
f(X)=\operatorname{Tr}\left(X^{-1}\right)+\operatorname{Tr}(A X)
$$

1. Show there exists a minimizer to f on \mathcal{O}. Hint : you may use the inequality $\operatorname{Tr}(U V) \geqslant$ $\sum_{i=1}^{n} \lambda_{i}(U) \lambda_{n-i+1}(V)$, where all eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in descending order ; i.e., $\lambda_{1} \geqslant$ $\cdots \geqslant \lambda_{n}$.
2. Find the minimizer and the optimal value of f.

Exercise 8 (Penalty method).

Let $F: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a lower semi-continuous function, coercive on \mathbb{R}^{n}. Let C be a closed set of \mathbb{R}^{n} with $\operatorname{dom}(f) \cap C \neq \varnothing$. We seek to solve the constrained problem

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & F(x) \tag{P}\\
\text { s.t. } & x \in C .
\end{array}
$$

Let $R: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{+}$be a lower semi-continuous function such that

$$
R(x)=0 \quad \Longleftrightarrow \quad x \in C
$$

R is called penalty function as it assigns a positive cost to any point that is not in the constraint set C. Let $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ be a nondecreasing sequence of positive reals satisfying $\lim _{k \rightarrow+\infty} \gamma_{k}=+\infty$. We denote by $\left(\mathcal{P}_{k}\right)$ the following penalized problem :

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} F_{\gamma_{k}}(x):=F(x)+\gamma_{k} R(x) \tag{k}
\end{equation*}
$$

Show that:

1. For all $k \in \mathbb{N},\left(\mathcal{P}_{k}\right)$ has at least one solution x_{k}.
2. The sequence $\left(x_{k}\right)_{n \in \mathbb{N}}$ is bounded.
3. Any cluster point of $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a solution to (\mathcal{P}).
4. What can we say if F is strictly convex?

Optimization - Exercises

Day 2

Exercise 1 (Convergence fixed step gradient descent algorithm).

For all $x \in \mathbb{R}^{n}$ we define the function f by

$$
f(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle,
$$

where $A \in \mathcal{S}_{n}^{++}(\mathbb{R})$, with eigenvalues $\left(\lambda_{i}\right)_{1 \leqslant i \leqslant n}$ verifying

$$
0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n}
$$

and $b \in \mathbb{R}^{n}$. It has already been seen in exercise 4 that f admits a unique minimizer x^{*}, which is the solution to the linear system $A x=b$.
The fixed step gradient descent algorithm is given by

$$
\left\{\begin{array}{l}
x_{0} \in \mathbb{R}^{n}, \\
x_{k+1}=x_{k}-\gamma \nabla f\left(x_{k}\right) .
\end{array}\right.
$$

Show the algorithm converges to x^{*} for any step $\left.\gamma \in\right] 0, \frac{2}{\lambda_{n}}[$. Give the step γ that ensures the fastest convergence.

Exercise 2 (Convergence of Uzawa method).

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a differentiable α-strongly convex function and let $C \in \mathbb{R}^{m \times n}, d \in \mathbb{R}^{m}$. We propose to study the convergence of Uzawa method towards a solution to the following problem :

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \tag{P}\\
\text { subject to } & C x \leqslant d,
\end{array}
$$

where the set $\left\{x \in \mathbb{R}^{N} \mid C x \leqslant d\right\}$ is assumed to be nonempty. Let $\rho>0$. Uzawa algorithm generates sequences $\left(x_{k}\right)_{k \in \mathbb{N}} \in\left(\mathbb{R}^{n}\right)^{\mathbb{N}}$ and $\left(\lambda_{k}\right)_{k \in \mathbb{N}} \in\left(\mathbb{R}^{m}\right)^{\mathbb{N}}$ according to the following iterations :

$$
\left\{\begin{array}{l}
x_{k}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)+\left\langle\lambda_{k}, C x-d\right\rangle, \\
\lambda_{k+1}=\max \left(\lambda_{k}+\rho\left(C x_{k}+d\right), 0\right) .
\end{array}\right.
$$

1. Explain why $\operatorname{Problem}(\mathcal{P})$ admits a unique solution and why the algorithm is well defined.
2. (i) Write the Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}$ for Problem (\mathcal{P}).
(ii) Show that for any $x \in \mathbb{R}^{n}$,

$$
\left(\lambda^{*}=\underset{\lambda \in[0,+\infty)^{m}}{\operatorname{argmax}} \mathcal{L}(x, \lambda)\right) \quad \Longleftrightarrow \quad\left((\forall \rho>0) \quad \lambda^{*}=\mathrm{p}_{+}(\lambda+\rho(C x-d))\right),
$$

where p_{+}denotes the projection on $[0,+\infty)^{m}$.
(iii) Let $\left(x^{*}, \lambda^{*}\right)$ be a saddle point of \mathcal{L}. Show that the following holds :

$$
\left\{\begin{array}{l}
\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)+C^{\top}\left(\lambda_{k}-\lambda\right)=0 \\
\left\|\lambda_{k+1}-\lambda^{*}\right\| \leqslant\left\|\lambda_{k}-\lambda^{*}+\rho C\left(x_{k}-x^{*}\right)\right\|
\end{array}\right.
$$

3. Using (\star), show the convergence of the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ to x^{*} when ρ satisfies

$$
0<\rho<\frac{2 \alpha}{\|C\|^{2}}
$$

Exercise 3 (Optimization with equality constraints).

Find the points (x, y, z) de \mathbb{R}^{3} which belong to H_{1} and H_{2} and which are the closest to the origin.

$$
\begin{aligned}
& \left(H_{1}\right): 3 x+y+z=5 \\
& \left(H_{2}\right): x+y+z=1
\end{aligned}
$$

1. Write the problem as an optimization problem.
2. What can you say about existence of solutions? Unicity?
3. Solve the optimization problem using the Slater conditions.

Exercise 4 (Optimization with inequality constraints).

Solve the following optimization problem :

$$
\begin{array}{ll}
\underset{(x, y) \in \mathbb{R}^{2}}{\operatorname{minimize}} & x^{4}+3 y^{4} \\
\text { subject to } & x^{2}+y^{2} \geqslant 1 .
\end{array}
$$

Exercise 5 (Optimization with equality and inequality constraints).

Let $f: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be defined by

$$
f\left(p_{1}, \ldots, p_{k}\right)=\sum_{i=1}^{k} p_{i}^{2}
$$

Maximize f on the simplex Λ_{k} of \mathbb{R}^{k}

$$
\Lambda_{k}:=\left\{p=\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{R}^{k} \mid p_{i} \geqslant 0 \text { for all } i, \text { and } \sum_{i=1}^{k} p_{i}=1\right\}
$$

Exercise 6 (Characterization of $\mathrm{SO}_{n}(\mathbb{R})$).

We denote $\mathrm{SO}_{n}(\mathbb{R})=\left\{M \in \mathbb{R}^{n \times n} \mid M\right.$ is orthogonal and $\left.\operatorname{det}(M)=1\right\}$ and $\mathrm{SL}_{n}(\mathbb{R})=\{M \in$ $\left.\mathbb{R}^{n \times n} \mid \operatorname{det}(M)=1\right\}$. Show $\mathrm{SO}_{n}(\mathbb{R})$ is exactly composed of the matrices of $\mathrm{SL}_{n}(\mathbb{R})$ which minimize the Euclidean norm of $\mathbb{R}^{n \times n}$, i.e.

$$
\forall M \in \mathbb{R}^{n \times n},\|M\|=\sqrt{\operatorname{Tr}\left(M^{\top} M\right)}
$$

