Optimization – Exercises Day 1

Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space. We denote $\|\cdot\|$ the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show that if x is a local minimizer of f, then

$$\nabla f(x) = 0$$
$$\nabla^2 f(x) \ge 0$$

Is the first order condition a sufficient condition for x to be a local minimizer? If no, give an example. What assumption can you make for this condition to be an equivalence?

Exercise 2 (Caracterizations of convex functions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show the following equivalences :

1. f is convex if, and only if,

$$\forall (x,y) \in H \times H, \ f(y) \ge f(x) + \langle \nabla f(x) \mid y - x \rangle$$

2. f is convex if, and only if,

 $\forall x \in H, \ \nabla^2 f(x) \ge 0,$

where $\nabla^2 f(x)$ is the hessian of f at x.

Exercise 3 (Squared distance function).

Let A be a nonempty closed convex subset of H. We consider the function "squared distance to A" defined for all $x \in H$ by

$$g(x) = \inf_{y \in A} \|x - y\|^2.$$

- 1. Show that g is convex.
- 2. Show that g is Fréchet differentiable, with $\nabla g(x) = 2(x p_A(x))$, where p_A denotes the projection on A.

Exercise 4 (Minimization of a quadratic function).

Let $A \in \mathcal{S}_n^{++}(\mathbb{R})$ (set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$) and $b \in \mathbb{R}^n$. Let f be defined for all $x \in \mathbb{R}^n$ by

$$f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle.$$

Show that f admits a unique minimizer and give an expression of this minimizer.

Exercise 5 (Convex optimization exam 2019).

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a convex, differentiable and bounded function on \mathbb{R}^n . Show f is constant.

Exercise 6 (About ε -minimizers).

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuous function bounded from below on \mathbb{R}^n . Let $\varepsilon > 0$ and u a ε -minimizer of f, i.e. u satisfies

$$f(u) \leq \inf_{x \in \mathbb{R}^n} f(x) + \varepsilon.$$

Let $\lambda > 0$ and consider

$$g: x \in \mathbb{R}^n \mapsto g(x) := f(x) + \frac{\varepsilon}{\lambda} ||x - u||.$$

- 1. Show there exists $v \in \mathbb{R}^n$ which minimizes g on \mathbb{R}^n . Show this point v satisfies the following conditions :
 - (i) $f(v) \leq f(u)$,
 - (ii) $||u v|| \leq \lambda$,
 - (iii) $\forall x \in \mathbb{R}^n, f(v) \leq f(x) + \frac{\varepsilon}{\lambda} ||x v||.$
- 2. Suppose in addition that f is differentiable on \mathbb{R}^n . Show that for all $\epsilon > 0$, there exists $x_{\epsilon} \in \mathbb{R}^n$ such that

$$\|\nabla f(x_{\epsilon})\| \leq \epsilon.$$

Exercise 7.

Let $\mathcal{O} = \mathcal{S}_n^{++}(\mathbb{R})$ be the (open) set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$. \mathcal{O} is endowed with the scalar product $\langle U, V \rangle = \text{Tr}(UV)$. Let $A \in \mathcal{O}$ and f be defined for all $X \in \mathcal{O}$ by

$$f(X) = \operatorname{Tr}(X^{-1}) + \operatorname{Tr}(AX).$$

- 1. Show there exists a minimizer to f on \mathcal{O} . Hint : you may use the inequality $\operatorname{Tr}(UV) \geq \sum_{i=1}^{n} \lambda_i(U)\lambda_{n-i+1}(V)$, where all eigenvalues $\lambda_1, \ldots, \lambda_n$ are in descending order; i.e., $\lambda_1 \geq \cdots \geq \lambda_n$.
- 2. Find the minimizer and the optimal value of f.

Exercise 8 (Penalty method).

Let $F \colon \mathbb{R}^n \longrightarrow \mathbb{R}$ be a lower semi-continuous function, coercive on \mathbb{R}^n . Let C be a closed set of \mathbb{R}^n with dom $(f) \cap C \neq \emptyset$. We seek to solve the constrained problem

$$\begin{array}{l} \underset{x \in \mathbb{R}^n}{\min i x \in \mathbb{R}^n} \quad F(x) \qquad \qquad (\mathcal{P}) \\ \text{s.t.} \qquad x \in C. \end{array}$$

Let $R: \mathbb{R}^n \longrightarrow \mathbb{R}^+$ be a lower semi-continuous function such that

$$R(x) = 0 \quad \iff \quad x \in C.$$

R is called penalty function as it assigns a positive cost to any point that is not in the constraint set C. Let $(\gamma_k)_{k\in\mathbb{N}}$ be a nondecreasing sequence of positive reals satisfying $\lim_{k\to+\infty} \gamma_k = +\infty$. We denote by (\mathcal{P}_k) the following penalized problem :

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad F_{\gamma_k}(x) := F(x) + \gamma_k R(x). \tag{\mathcal{P}_k}$$

Show that :

- 1. For all $k \in \mathbb{N}$, (\mathcal{P}_k) has at least one solution x_k .
- 2. The sequence $(x_k)_{n \in \mathbb{N}}$ is bounded.
- 3. Any cluster point of $(x_k)_{k\in\mathbb{N}}$ is a solution to (\mathcal{P}) .
- 4. What can we say if F is strictly convex?

Optimization – Exercises

Day 2

Exercise 1 (Convergence fixed step gradient descent algorithm).

For all $x \in \mathbb{R}^n$ we define the function f by

$$f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle,$$

where $A \in \mathcal{S}_n^{++}(\mathbb{R})$, with eigenvalues $(\lambda_i)_{1 \leq i \leq n}$ verifying

$$0 < \lambda_1 \leq \ldots \leq \lambda_n,$$

and $b \in \mathbb{R}^n$. It has already been seen in exercise 4 that f admits a unique minimizer x^* , which is the solution to the linear system Ax = b.

The fixed step gradient descent algorithm is given by

$$\begin{cases} x_0 \in \mathbb{R}^n, \\ x_{k+1} = x_k - \gamma \nabla f(x_k). \end{cases}$$

Show the algorithm converges to x^* for any step $\gamma \in \left]0, \frac{2}{\lambda_n}\right[$. Give the step γ that ensures the fastest convergence.

Exercise 2 (Convergence of Uzawa method).

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a differentiable α -strongly convex function and let $C \in \mathbb{R}^{m \times n}$, $d \in \mathbb{R}^m$. We propose to study the convergence of Uzawa method towards a solution to the following problem :

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\min initial minimize} & f(x) \\ \text{subject to} & Cx \leqslant d, \end{array}$$
 (\mathcal{P})

where the set $\{x \in \mathbb{R}^N \mid Cx \leq d\}$ is assumed to be nonempty. Let $\rho > 0$. Uzawa algorithm generates sequences $(x_k)_{k \in \mathbb{N}} \in (\mathbb{R}^n)^{\mathbb{N}}$ and $(\lambda_k)_{k \in \mathbb{N}} \in (\mathbb{R}^m)^{\mathbb{N}}$ according to the following iterations :

$$\begin{cases} x_k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x) + \langle \lambda_k, Cx - d \rangle, \\ \lambda_{k+1} = \max\left(\lambda_k + \rho(Cx_k + d), 0\right). \end{cases}$$

- 1. Explain why Problem (\mathcal{P}) admits a unique solution and why the algorithm is well defined.
- 2. (i) Write the Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \longrightarrow \mathbb{R}$ for Problem (\mathcal{P}) . (ii) Show that for any $x \in \mathbb{R}^n$,

$$\left(\lambda^* = \operatorname*{argmax}_{\lambda \in [0, +\infty)^m} \mathcal{L}(x, \lambda)\right) \quad \Longleftrightarrow \quad \left((\forall \rho > 0) \quad \lambda^* = \mathrm{p}_+(\lambda + \rho(Cx - d))\right),$$

where p_+ denotes the projection on $[0, +\infty)^m$.

(iii) Let (x^*, λ^*) be a saddle point of \mathcal{L} . Show that the following holds :

$$\begin{cases} \nabla f(x_k) - \nabla f(x^*) + C^{\top}(\lambda_k - \lambda) = 0\\ \|\lambda_{k+1} - \lambda^*\| \le \|\lambda_k - \lambda^* + \rho C(x_k - x^*)\|. \end{cases}$$
(*)

3. Using (\star) , show the convergence of the sequence $(x_k)_{k\in\mathbb{N}}$ to x^* when ρ satisfies

$$0 < \rho < \frac{2\alpha}{\|C\|^2}.\tag{**}$$

Exercise 3 (Optimization with equality constraints).

Find the points (x, y, z) de \mathbb{R}^3 which belong to H_1 and H_2 and which are the closest to the origin.

$$(H_1)$$
 : $3x + y + z = 5,$
 (H_2) : $x + y + z = 1.$

- 1. Write the problem as an optimization problem.
- 2. What can you say about existence of solutions? Unicity?
- 3. Solve the optimization problem using the Slater conditions.

Exercise 4 (Optimization with inequality constraints).

Solve the following optimization problem :

$$\begin{array}{ll} \underset{(x,y)\in\mathbb{R}^2}{\text{minimize}} & x^4 + 3y^4\\ \text{subject to} & x^2 + y^2 \ge 1 \end{array}$$

Exercise 5 (Optimization with equality and inequality constraints).

Let $f: \mathbb{R}^k \longrightarrow \mathbb{R}$ be defined by

$$f(p_1, \dots, p_k) = \sum_{i=1}^k p_i^2.$$

Maximize f on the simplex Λ_k of \mathbb{R}^k

$$\Lambda_k := \left\{ p = (p_1, \dots, p_k) \in \mathbb{R}^k \mid p_i \ge 0 \text{ for all } i, \text{ and } \sum_{i=1}^k p_i = 1 \right\}.$$

Exercise 6 (Characterization of $SO_n(\mathbb{R})$).

We denote $SO_n(\mathbb{R}) = \{M \in \mathbb{R}^{n \times n} \mid M \text{ is orthogonal and } det(M) = 1\}$ and $SL_n(\mathbb{R}) = \{M \in \mathbb{R}^{n \times n} \mid det(M) = 1\}$. Show $SO_n(\mathbb{R})$ is exactly composed of the matrices of $SL_n(\mathbb{R})$ which minimize the Euclidean norm of $\mathbb{R}^{n \times n}$, i.e.

$$\forall M \in \mathbb{R}^{n \times n}, \ \|M\| = \sqrt{\mathrm{Tr}(M^{\top}M)}.$$