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Optimization – Exercises

Day 1

Let pH, x¨, ¨yq be a real Hilbert space. We denote } ¨ } the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).
Let f : H ›Ñ R be a twice differentiable function. Show that if x is a local minimizer of f , then

rfpxq “ 0

r
2
fpxq © 0

Is the first order condition a sufficient condition for x to be a local minimizer ? If no, give an

example. What assumption can you make for this condition to be an equivalence ?

Exercise 2 (Caracterizations of convex functions).
Let f : H ›Ñ R be a twice differentiable function. Show the following equivalences :

1. f is convex if, and only if,

@px, yq P H ˆ H, fpyq • fpxq ` xrfpxq | y ´ xy.

2. f is convex if, and only if,

@x P H, r
2
fpxq © 0,

where r
2
fpxq is the hessian of f at x.

Exercise 3 (Squared distance function).
Let A be a nonempty closed convex subset of H. We consider the function “squared distance to

A” defined for all x P H by

gpxq “ inf
yPA

}x ´ y}2.

1. Show that g is convex.

2. Show that g is Fréchet differentiable, with rgpxq “ 2px ´ pApxqq, where pA denotes the

projection on A.

Exercise 4 (Minimization of a quadratic function).
Let A P S

``
n pRq (set of symmetric positive definite matrices of Rnˆn

) and b P Rn
. Let f be

defined for all x P Rn
by

fpxq “ 1

2
xAx, xy ´ xb, xy.

Show that f admits a unique minimizer and give an expression of this minimizer.

Exercise 5 (Convex optimization exam 2019).
Let f : Rn ›Ñ R be a convex, differentiable and bounded function on Rn

. Show f is constant.

Exercise 6 (About "-minimizers).
Let f : Rn ›Ñ R be a continuous function bounded from below on Rn

. Let " ° 0 and u a

"-minimizer of f , i.e. u satisfies

fpuq § inf
xPRn

fpxq ` ".
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Let � ° 0 and consider

g : x P Rn fiÑ gpxq :“ fpxq ` "

�
}x ´ u}.

1. Show there exists v P Rn
which minimizes g on Rn

. Show this point v satisfies the following

conditions :

(i) fpvq § fpuq,
(ii) }u ´ v} § �,

(iii) @x P Rn
, fpvq § fpxq ` "

�}x ´ v}.
2. Suppose in addition that f is differentiable on Rn

. Show that for all ✏ ° 0, there exists

x✏ P Rn
such that

}rfpx✏q} § ✏.

Exercise 7.
Let O “ S

``
n pRq be the (open) set of symmetric positive definite matrices of Rnˆn

. O is endowed

with the scalar product xU, V y “ TrpUV q. Let A P O and f be defined for all X P O by

fpXq “ TrpX´1q ` TrpAXq.

1. Show there exists a minimizer to f on O. Hint : you may use the inequality TrpUV q •∞n
i“1 �ipUq�n´i`1pV q, where all eigenvalues �1, . . . ,�n are in descending order ; i.e., �1 •

¨ ¨ ¨ • �n.

2. Find the minimizer and the optimal value of f .

Exercise 8 (Penalty method).
Let F : Rn ›Ñ R be a lower semi-continuous function, coercive on Rn

. Let C be a closed set of

Rn
with dompfq X C ‰ ?. We seek to solve the constrained problem

minimize
xPRn

F pxq (P)

s.t. x P C.

Let R : Rn ›Ñ R`
be a lower semi-continuous function such that

Rpxq “ 0 ñ x P C.

R is called penalty function as it assigns a positive cost to any point that is not in the constraint

set C. Let p�kqkPN be a nondecreasing sequence of positive reals satisfying limkÑ`8 �k “ `8.

We denote by (Pk) the following penalized problem :

minimize
xPRn

F�kpxq :“ F pxq ` �kRpxq. (Pk)

Show that :

1. For all k P N, (Pk) has at least one solution xk.

2. The sequence pxkqnPN is bounded.

3. Any cluster point of pxkqkPN is a solution to (P).

4. What can we say if F is strictly convex ?
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Exercise 1 (Convergence fixed step gradient descent algorithm).

For all x P Rn we define the function f by

fpxq “ 1

2
xAx, xy ´ xb, xy,

where A P S``
n pRq, with eigenvalues p�iq1§i§n verifying

0 † �1 § . . . § �n,

and b P Rn. It has already been seen in exercise 4 that f admits a unique minimizer x
˚, which

is the solution to the linear system Ax “ b.
The fixed step gradient descent algorithm is given by

"
x0 P Rn

,

xk`1 “ xk ´ �rfpxkq.

Show the algorithm converges to x
˚ for any step � P

ı
0,

2
�n

”
. Give the step � that ensures the

fastest convergence.

Exercise 2 (Convergence of Uzawa method).

Let f : Rn ›Ñ R be a differentiable ↵-strongly convex function and let C P Rmˆn, d P Rm. We
propose to study the convergence of Uzawa method towards a solution to the following problem :

minimize
xPRn

fpxq
subject to Cx § d,

(P)

where the set tx P RN | Cx § du is assumed to be nonempty. Let ⇢ ° 0. Uzawa algorithm
generates sequences pxkqkPN P pRnqN and p�kqkPN P pRmqN according to the following iterations :

#
xk “ argmin

xPRn
fpxq ` x�k, Cx ´ dy,

�k`1 “ max p�k ` ⇢pCxk ` dq, 0q .

1. Explain why Problem pPq admits a unique solution and why the algorithm is well defined.
2. (i) Write the Lagrangian L : Rn ˆ Rm ›Ñ R for Problem pPq.

(ii) Show that for any x P Rn,
˜
�

˚ “ argmax

�Pr0,`8qm
Lpx,�q

¸
ñ pp@⇢ ° 0q �

˚ “ p`p� ` ⇢pCx ´ dqqq ,

where p` denotes the projection on r0,`8qm.
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(iii) Let px˚
,�

˚q be a saddle point of L. Show that the following holds :
"

rfpxkq ´ rfpx˚q ` C
Jp�k ´ �q “ 0

}�k`1 ´ �
˚} § }�k ´ �

˚ ` ⇢Cpxk ´ x
˚q}. (‹)

3. Using (‹), show the convergence of the sequence pxkqkPN to x
˚ when ⇢ satisfies

0 † ⇢ † 2↵

}C}2 . (‹‹)

Exercise 3 (Optimization with equality constraints).

Find the points px, y, zq de R3 which belong to H1 and H2 and which are the closest to the origin.

pH1q : 3x ` y ` z “ 5,

pH2q : x ` y ` z “ 1.

1. Write the problem as an optimization problem.
2. What can you say about existence of solutions ? Unicity ?
3. Solve the optimization problem using the Slater conditions.

Exercise 4 (Optimization with inequality constraints).

Solve the following optimization problem :

minimize
px,yqPR2

x
4 ` 3y

4

subject to x
2 ` y

2 • 1.

Exercise 5 (Optimization with equality and inequality constraints).

Let f : Rk ›Ñ R be defined by

fpp1, . . . , pkq “
kÿ

i“1

p
2
i .

Maximize f on the simplex ⇤k of Rk

⇤k :“
#
p “ pp1, . . . , pkq P Rk | pi • 0 for all i, and

kÿ

i“1

pi “ 1

+
.

Exercise 6 (Characterization of SOnpRq).
We denote SOnpRq “ tM P Rnˆn | M is orthogonal and detpMq “ 1u and SLnpRq “ tM P
Rnˆn | detpMq “ 1u. Show SOnpRq is exactly composed of the matrices of SLnpRq which minimize
the Euclidean norm of Rnˆn, i.e.

@M P Rnˆn
, }M} “

b
TrpMJMq.
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