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Day 1

Let (H, {-,-)) be a real Hilbert space. We denote |- | the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).
Let f: H — R be a twice differentiable function. Show that if x is a local minimizer of f, then

Vfix)=0
V23f(x) =0

Is the first order condition a sufficient condition for z to be a local minimizer ? If no, give an
example. What assumption can you make for this condition to be an equivalence ?

Correction.

> First order necessary condition. Suppose x is a local minimizer of f. Then there exists
r > 0 such that for all y € B(x,r), f(y) = f(z). Let h € H and ¢t > 0 such that
x + th € B(z,r). We have

flz +th) = f(z) +<{Vf(x),th) + o(t).

Then

flw+th) = f(z)

V(@) by + of1) = T

Since f(z +th) — f(z) = 0 and ¢t > 0, we get
(Vf(x),h)y+o(1) = 0.

Letting ¢ tend toward 07,

(Vf(z),h) = 0.
The same reasoning can be done with ¢ < 0, yielding

(Vf(x),hy <0.
Finally, forall h € H,

(Vf(x),h) =0,
thus Vf(z) = 0.

> Second order necessary condition. Suppose z is a local minimizer of f. Then there
exists r > 0 such that for all y € B(x,r), f(y) = f(x). Let h € H and ¢ > 0 such that
x +th e B(z,r).
Using second order Taylor-Young’s expansion :

f(x +th) = f(x) + LV f(x),h) + t22<h, V2f(z)h) + o(t?)

2
= (&) + S, V@) + ofs?),



where we used the first order necessary condition. Dividing the inequality by ¢?/2 and
letting t tend toward 0, it follows form the fact that z is a local mimimizer that

(h, V2 f(z)h) = 0.

This last inequality is true for all A € H and proves the property.

The converse property does not hold generally : consider f : 2 — 23 and 2 = 0 for instance.
The first order condition becomes a necessary and sufficient condition when f
is convexe. Moreover, il this case, local minimizers are global minimizers.

Exercise 2 (Caracterizations of convex functions).
Let f: H — R be a twice differentiable function. Show the following equivalences :

1. f is convex if, and only if,
V(z,y)e H x H, f(y) = f(z) +{V[(x) [y — =)

2. f is convex if, and only if|
Ve H, V2f(z) =0,

where V2f(x) is the hessian of f at x.

Correction.

1. Suppose f is convex. Let (z,y) € H x H. Since f is differentiable, we have for all
t€l0,1] :

[l +tly —x)) = f(2) +t Vf(2),y = 2) + o).
Moreover, using the convexity of f,
fla+t(y—z) < (L=1)f(x) +1f(y).

It follows that

tf(y) = tf(x) +t V@), y —x) + oft).
Dividing the inequality by ¢ > 0 and letting ¢ tend toward 0, we finally get

fy) = f(z) + V() y — ).

Let (z,y) € H x H and t € [0,1]. Let z = = + t(y — ). We have

Vf(z), =ty —x))
Vi), (1 =t)(y —x)).

Multiplying the first inequality by (1 — ¢) and the second by t, we get

(1 =0)f(z) +tf(y) — f(2) =0,

which is the desired result.

2. Suppose f is convex. Let x € H, h € H, t > 0. It follows form second order
Taylor-Young’s formula :

2
Flar -+ th) = f() = KT f (@), hy = b, V2f(@)h) + o(#) > 0.



Simplifying by ¢2/2, and letting ¢ tend toward 0, we finally get
(h, V2 f(z)h) = 0.

/\ We did not suppose f is a twice continuously differentiable function. Thus, we
cannot use Taylor in its integral from. However, we can apply second order Taylor-
Lagrange’s expansion to the function ® : ¢ — f(z + t(y — x)) : there exists t* € [0, 1]
such that

B(1) = B(0) + #(0) + L B(1"),
ie.
F) = £(@) + (VI @)y =2 + 50— 2, V2 F @ + 5y — )y — 2).
The hypothesis V2f > 0 finally gives

fy) = fx) = V() y — ),

which is equivalent to the convexity of f.

Exercise 3 (Squared distance function).
Let A be a nonempty closed convex subset of H. We consider the function “squared distance to
A” defined for all x € H by

= inf |z —y|>
9(x) = inf |z - y]

1. Show that g is convex.

2. Show that g is Fréchet differentiable, with Vg(z) = 2(x — pa(z)), where pa denotes the
projection on A.

Correction.

1. Let (x1,72) € H? and t € [0, 1]. Since A is nonempty closed and convex, the projection
pa4 is well defined. Using that tpa(z1) + (1 —t)pa(z2) € A, it follows that

gtz + (1= t)za) < [tr + (1 = t)zg — (tpale1) + (1 — t)pala))]?,
= [t(z1 — pa(a1)) + (1 — ) (22 — pa(z2))[?,
< tler —pal@)|® + (1 —t)|z2 — palz2)?,
=tg(x1) + (1 —t)g(x2).

1 —
1—

2. Let (z,h) € H,
g9z +h) = |(z + h) —palz + h)[?,
= |z —pa(z) + pa(z) — palz + h) + h|?,
= g(x) + 2z — pa(x), pa(z) — palz +h) + h) + [pa(z) — pa(z + h) + h|?,
=g(x) + 2(z —pa(x)),h) + 6(z, h),

where

0(x,h) = 2w — pa(z),pa(@) = palz + h)) + [pa(z) — pale + h) + h|%.



Let us prove that 6(x,h) = o(||h|). By definition of the gradient operator, this will
conclude the proof. First, recall the following characterization of the projection :
Property. For all x € H,

‘Vy €A, (z—pa(x),y—palz) < 0\

Using this property, we deduce that
0<0(x,h).
Moreover,

O(x, h) = 2= —pa(@),pa(@) — pa(z + h))
+ Ipa(@) — pale + h) + A
< Az —pa(z +h),pa(e) —pa(z + h)) + [pa(z) — palz + h) + h[?,
= 2x+h —palx+h),pa(zr) —palx+h)) —2{h,pa(z) —palx + h))
+ [pa(@) —pale + h) + [
< —2(h,pa(e) = pa(z + h)) + [pa(z) —palz +h) + h|?.
Finally, using Cauchy-Schwarz inequality and the following well known property of

the projection, one easily derives that 0 < (z, h) < cst |h|%.
Property. For all (x,y) € H?,

Ipa(z) = pa(W)] < |z —yl.

Exercise 4 (Minimization of a quadratic function).
Let A € §1(R) (set of symmetric positive definite matrices of R"*™) and b € R™. Let f be
defined for all z € R™ by

Fz) = %<A$,m> (b .

Show that f admits a unique minimizer and give an expression of this minimizer.

Correction.

> Existence. f is clearly lower-semi-continuous and proper. We show that f is coercive.
Since A € S3 7 (R), we have

1
F(@) = S winlal? — b, ),
where Apin is the smallest eigenvalue of A. It follows from Cauchy-Schwarz inequality
1
f(z) = §>\min\|x\!2 = o] —
[l —+o00

We conclude that f admits at least one global minimizer.
> Unicity. f is strictly convex on R” since for all z € R",

V2f(z)=A>0.

The minimizer is thus unique.

> Expression of the minimizer. Since f is a convex function, the first order condition
is necessary and sufficient : z* is a minimizer of f if, and only if, V f(z*) = 0. It follows
that the unique minimizer z* of f is given by

¥ = A",



Exercise 5 (Convex optimization exam 2019).
Let f:R™ — R be a convex, differentiable and bounded function on R™. Show f is constant.

Correction. We shall show that for all z € R, Vf(x) = 0. It is sufficient to show that for
all h e R,
(Vf(z),h) <0.

Let x € R™ and h € R™. For all £ > 0, it follows from the convexity of f on R" that :
fle+th) — f(x) = LV f(x),h),

then

Letting ¢t tend toward +oo and using the fact that f is bounded, we finally get

0= (Vf(z),h.

Exercise 6 (About c-minimizers).
Let f: R — R be a continuous function bounded from below on R™. Let ¢ > 0 and u a

e-minimizer of f, i.e. u satisfies
f(u) < inf f(z)+e.

zeR"
Let A > 0 and consider .
g: 2 € R o g(a) i= f(@) + Sl .
1. Show there exists v € R"™ which minimizes g on R™. Show this point v satisfies the following
conditions :
(i) f(v) < f(uw),
(i) Ju—v]| <A,
(i) Vo € R™, f(v) < f(2) + §lo —v].
2. Suppose in addition that f is differentiable on R™. Show that for all ¢ > 0, there exists

z. € R™ such that
IVf(zed)] <e

Correction.

1. Function g is continuous, and it is clear that lim |, g(z) = 400 since f is bounded
from below. Hence g admits a minimizer v € R"™.

(i) By definition of v, for all x € R™,
€ €
F@) + 5o —ul < f@) + Sl —ul, )

In particular, for z = u, we obtain f(z)+ §|v—u| < f(u). Therefore f(v) < f(u).
(ii) Denote by f = inf cgn f(2). Then according to (1),

_ £ _
FrSpo—ul < S < F+e
which directly implies that |v — uf < .

iii) From the reverse triangular inequality, |z — u| — [v — u| < ||z — v|. Now, using
i) T L . lar | i N .
(1), it follows that for all x € R,

f(©) < f(@) + Sl = o]



2. Let € > 0. Fix A\ = € and € = €. According to the previous question, there exists
z. € R™ such that
Ve e R", f(ze) < f() + €|z — 2.

For d €e R™ and a > 0, applying the previous inequality to x = x.+ad and * = x.—ad

yields
f(33€ + Oéd) - f(fEe) > _EHdH
o
and
(6]

Letting o — 0%, it follows that

(Vf(xe),d) = —€|d| and (V[f(xe), —d) = —e|d],

ie.
KV f(xe), d)f < eld].
This implies that |V f(z.)]| <e.

Exercise 7.

Let O = ST (R) be the (open) set of symmetric positive definite matrices of R"*". O is endowed
with the scalar product (U, V) = Tr(UV'). Let A€ O and f be defined for all X € O by

f(X) = Te(X ™) + Tr(AX).

1. Show there exists a minimizer to f on O. Hint : you may use the inequality Tr(UV) =
D Mi(U)An—is1(V), where all eigenvalues A1, ..., A, are in descending order; i.e., A\ =
e = A\

2. Find the minimizer and the optimal value of f.

Correction.
1. > Continuity. f is continuous as a composition of continuous functions.
> Coercivity. We need to show that (a) lim f(X) = 4o and (b) for all X €

\II +o

20, lim f(X) = +oo.
X—-X
XeO

(a) is clear since f(X) = Tr(AX) = > Mi(A)A—iv1(X) —  +o0.

X[ =+

(b) Let X € 00. Then \,(X) = 0. If | X —XH — 0, then A\, (X) — 07. Hence,
f(X) = -5,

Therefore, f admits a global minimizer.

2. If X* is a minimizer of f on O, then df(X*) = 0. We first start computing the
differential of f at X. Let H € O such that X + H € O. Recall that ¢: X — X!
differentiable and that its differential is

de(X)(H) = - X 'HX '

+00. (2)
) Ix— Xuﬁo

Now, using the chain rule,
df(X)(H) = Tr(-X THX 1) + Tr(AH)
=(—(X7")*+ A H).



It follows that df(X*) = 0 is equivalent to —(X* )2+ A =0, i.e.,

Remark : Since A is positive symetric, A=V2 is uniquely defined.
Finally, the optimal value of f is
F(X*) = Tr(AY?) + Tr(AY?),
= 2Tr(AY?).

Exercise 8 (Penalty method).
Let F': R™ — R be a lower semi-continuous function, coercive on R™. Let C' be a closed set of
R™ with dom(f) n C # @. We seek to solve the constrained problem

minimize F(z) (P)

zeR™

s.t. zeC.
Let R: R®” — R be a lower semi-continuous function such that
R(z) =0 < zeC.

R is called penalty function as it assigns a positive cost to any point that is not in the constraint
set C. Let (7x)reny be a nondecreasing sequence of positive reals satisfying limg_, o 75 = +00.
We denote by (Py) the following penalized problem :

mini%ize FE, (x) := F(z) + 7 R(x). (Pr)
TeR™

Show that :
1. For all k € N, (Py) has at least one solution x.
2. The sequence (2 )nen is bounded.
3. Any cluster point of (zj)ken is a solution to (P).

4. What can we say if F' is strictly convex ?

Correction.
1. Let n € N. Since R is positive and ~; > 0, we have

Ve eR", F,, (z) = F(x).

Thus F,, is coercive, Ls.c. and proper on the closed set C' : there exists at least one
solution to (Py).
2. Let T € C. Then for all n > 0, F,, (z) = F (). Moreover, by definition of zy,

XL € levgpfyk(f)nyk = Ieng(f)ka e 16V<F(§)F,
last inclusion being a consequence of
VeeR", F,, (z) = F(x).

Since F' is coercive, levp(g) F' is bounded. Therefore (g )ken is bounded.

3. Because R" is of finite dimension, we can extract a subsequence (xkj )jen converging
to z* € R™. We must show that T € C, F(2*) < F(Z) and z* € C.



> Show Vz € C, F(z*) < F().
We have previously shown that for all x € C, for all k € N,

F(zy,;) < F(7).

Since F'is l.s.c.,
F(x*) < lim F(xy,;) < F(7).

> Show z* € C.
We have for all j € N,

By (@r;) = F(xr,) + o, R(y,)

= Fy(wg;) + (v, — 70)R(zk;)
> inf Fyy + (v, — 70) R(2k)),

thus
F.

() — inf B

VZeC, 0< R(ackj) <
’ij — 70

_ F(x) —inf By,
N ’}/kj — 70 .

Passing to the limit infinimum when & — 400, the right hand side term goes to
0 and the left hand side one to R(z*) (because R is ls.c.). It follows that

R(z*) = 0.
This proves that z* € C.

Finally 2* is a solution to (P).

4. If F is strictly convex, there is an unique solution to problem (P). Hence, (zj)ken is a
bounded sequence with a single cluster point. We can conclude that (xj)ken converges.
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Exercise 1 (Convergence fixed step gradient descent algorithm).
For all z € R™ we define the function f by

1
(@) = HAz,2) - (2,
where A € §;F1(R), with eigenvalues (\;)1<i<n verifying
0< A <...<Ay,

and b € R™. It has already been seen in exercise 4 that f admits a unique minimizer x*, which
is the solution to the linear system Ax = b.
The fixed step gradient descent algorithm is given by

{ X € Rn,
Tpy1 = Tk — YV f(xg).

Show the algorithm converges to z* for any step v € ]0, % [ Give the step + that ensures the

fastest convergence.

Correction. Recall | - | denotes the euclidian norm of R". Let k& € N*. By definition of
(k) keN

|zhss = 2% = 2k — YV (2R) — 27|
= [[(zr = 2%) = (Y f(xr) =V (=),

since x* verifies V f(z*) = 0. It follows that

|zpr1 — 2% = [ (zx — %) — y(Azp — Az¥)|
= [(In =7 A)(z), — 27|

< Lo — vA[[zr — 2.

Since I, — 7A is symmetric, |I, — vA4| = pI, — 74), where p(X) =
sup{|\|, A eigenvalue of X}. Hence

[l —vAl = max {|1 — A}

<J
Now if v € ]O, %[, we easily show that for all i € {1,...,n}
1>1—v9\>—-1,

i.e.
‘1 — ’}/Ai| < 1.



Then
T, — 4] < 1.

By recurrence
lar — 2*| < Lo = vA|*|zo — 2| — 0,
k—+o0

which proves the algorithm converges.
Best step . To find the best step v € ]O, % [, we first note that

I, — v Al = max{[1 — yA1], [T — yAul}-

Then, drawing the function v — max{|1 — y\1],|1 — yA,|}, we observe the minimum is
reached at v = ﬁ Indeed, the intersection point 7,y of the line v +— 1 — yA; with the
line v — v\, — 1 can be found solving

1= =9\, — 1.

This value of v ensures the fastest convergence.

Wl
ag{|1 — YAl 1

Exercise 2 (Convergence of Uzawa method).
Let f: R™ — R be a differentiable a-strongly convex function and let C' € R"™*"™ d e R™. We



propose to study the convergence of Uzawa method towards a solution to the following problem :

minimize  f(z)
zeR”™ (fp)
subject to Cx < d,

where the set {z € RY | Oz < d} is assumed to be nonempty. Let p > 0. Uzawa algorithm
generates sequences (3 )zen € (R™)N and (Mg )rey € (R™)N according to the following iterations :

zeR™

x = argmin f(z) + g, Cx — d),
Ae+1 = max (A + p(Czy + d),0) .

1. Explain why Problem (P) admits a unique solution and why the algorithm is well defined.

2. (i) Write the Lagrangian £: R™ x R™ — R for Problem (P).
(ii) Show that for any = € R",

()\* = argmax L(z, A)) > ((Vp>0) N =pi(\"+p(Czx—-d)),
Ae[0,+00)™

where p; denotes the projection on [0, +00)™.
(iii) Let (z*, \*) be a saddle point of £. Show that the following holds :

{ Vi(zy) — Vf(z*) + CT()‘k -A)=0 <*)
A1 = A*[ < A = A + pCzg — %)

3. Using (x), show the convergence of the sequence (zx)ren to ¥ when p satisfies

2a
0<p< —HCHQ. (**)

Correction.

1. f is strongly convex, continuous, and the set {x € RY | Cz < d} is nonempty, closed.
Therefore, Problem (P) admits a unique solution.
If you don’t already know this result, it can easily be proven the following way, using
the differentiability of f.

— Existence. The strong convexity of f implies that for all (z,y) € (R™)? (see
Exercise 3 in class notes),

F(@) = fy) + (VF @)z =) + Sl =yl

= f(y) = IV Wllz =yl + %Hﬂf —yl?,

where we used Cauchy-Schwarz inequality. The minoring term is a polynomial
function of degree 2 with a positive dominant coefficient. We deduce that f is
coercive. Since the set {z € RY | Cx < d} is nonempty, and closed, the existence
of a global minimizer follows from the course.

— Unicity. A strongly convex function is strictly convex.
2. (i) For all (z,A\) e R™ x [0, +00)™,

L(z,\) = f(z)+ A (Cz —d).



(ii) Let z € R™,

</\* = argmax L(z, )\)> — (VA€ [0,4+00)™ (Va2l(z,\*),A —A\*) <0)
Ae[0,+00)™

— (VA€ [0,+0)™, Vp >0 (p(Cz—d),A—\*)<0)
= (VA€ [0,40)™", Vp>0 (\" 4 p(Cx—d)-)\",\=)\*)<0)
= (Vp>0 X' =pi(\*+p(Cx—d))).

proj.
(iii) Since (z*, \*) is a saddle point of £, the following holds :

¥ = inf L(z,\*) and \* =sup L(z*,\).

We deduce from the previous question that

Vi(x*)+CTA* =0,

X = py (X + p(Ca* — ).
It is clear from the definition of the algorithm that we have similar relations for
the iterates :

{ Vf(.%’k) + CT)\k =0,
Ae+1 = P+ (A + p(Cay, — d)).

Finally, combining these inequalities and recalling that the projection operator
p+ is 1-Lipschitz, we obtain (*).
3. For all ke N,

[Ake1 = X2 < A = A"+ pClay — 2¥)|?
= [ Ak = N2+ PO — )2 + 20(CT (N = A*), g — %)
= [ Ak = N7+ p%|Cla — 2*)|? + 20(V f(2*) = V f(x), 2 — ).

Now, since f is a-strongly convex,
V(w,y) € (R")? (Vf(x) = Vf(y),z—y > afz -yl
Therefore,

[Aes = A7 < 0k = N2 + 2 IO Jan — 2*[* = a2pllay, — 2™,

= [\ = X2 + p(plC I - 20) [y, — 2*|*.

Therefore, when the condition (x) is met, the sequence (|[A\x—A*|)xen is decreasing and

bounded from below, thus it converges. It follows that | Ax —A*||2—||A\gr1—A*|? T 0
—+00

and

P20 = plCIH) o — 2| < Ak = X7 = [Arr = A*[* — 0.

-+

Additional remarks.

— If problem (P) is feasible and (x*, \*) is a saddle point of £, then z* is a solution to
the primal problem (P).

— Let * be a solution to the primal problem (7). Then, for a convex problem (convex
objective function + affine constraint functions) for which the constraints are qualified
(Slater), there exists a A* € [0, +00)™ such that (z*, \*) is a saddle point of L. See
class notes, page 11.



Exercise 3 (Optimization with equality constraints).
Find the points (x, %, z) de R? which belong to H; and Hs and which are the closest to the origin.
(Hi) : 3z4+y+2z=05,
(Hy) : z4+y+2z=1
1. Write the problem as an optimization problem.
2. What can you say about existence of solutions ? Unicity ?

3. Solve the optimization problem using the Slater conditions.

Correction.

1. We can write the problem as

e T

subject to ¢g1(x,y,2z) =0

g2(x,y,2) =0,
with f(z,y, 2) := 22+ 9%+ 22, g1(x,y,2) := 3v+y+2z—5 and go(z,y, 2) := x+y+2—1.
2. Let
C ={(z,y,2) e R’ | gi(w,y,2) = 0 and g2(,y,z) = 0},

The problem is feasible because dom(f) n C' # @ (notice (2,0,—1) € C'). Moreover,
fonction f is coercive, lower semi-continuous on the closed set C', hence there exists
at least one global minimizer. Finally, f is strictly convex on the convex set C, the
minimizer is therefore unique.

3. — f is convex, continuously differentiable,
— g1 et go are affine,
— Slater condition holds : consider the point (Z,7,z) = (2,0, —1).
We deduce from KKT theorem in the convexe case (see page 11 in the course) that
(z,y, 2) is a minimizer of f over C if, and only if, there exists (u1, u2) € R? such that

Vi(x,y,z)+ Vo (z,y,z) + u2Vga(z,y,z) =0, (Stationarity condition)

and
gi(z,y,2) =0 et ga(z,y,2) =0. (Constraints)
These two conditions are equivalent to the following system of equations

20+ 31 +p2 =0
2y+purt+pe =0

22+ p14+p2 =0
3r+y+ =z =5
rt+y+z = —1.

The unique solution of this system is

z =0

y =-1/2
z =-1/2
p==7/2
e =9/2.

Conclusion : the unique minimizer of f over C' is

|(2,9,2) = (2,-1/2,-1/2).]




Exercise 4 (Optimization with inequality constraints).
Solve the following optimization problem :

minimize  z* + 3y*
(z,y)eR?

subject to % 4 32 > 1.

Correction. Let f(z,y) := z* + 3y*, h(z,y) := —2? —y?> + 1 and
={zeR? | h(z,y) <0}.
1. The problem is feasible since C' n dom(f) # @. Function f is coercive since

fla,y) = (2% —1) +3(y° — 1)

>
>2|(z,y)P~4 ~— 4o
()| —+o0

Moreover f is l.s.c on the closed set C' : this ensures the existence of global minimizer
to fon C.
/\ We cannot say anything about the unicity of the solution even though f is strictly
convex on R”, because C' is not convex.
2. To find the solution(s) to the problem, we are going to apply KKT theorem. It will

give us a necessary optimality condition.

— f and h are continuously differentiable.

— The Mangasarian Fromovitz qualification of constraints holds for all (z,y) € C

because Vh(z,y) = (2z,2y) # 0 for all (z,y) € C.

The hypothesis of KKT theorem are verified. Let « be a local minimizer of f on C' :
there exists A € R™ such that

Vf(z)+ AVh(z) =0, (Stationarity condition)

and
Ah(z) =0, (Complementary slackness condition)

and
h(z) <O0. (Constraints)

These three conditions are equivalent to

43 — 2z
12y3 — 2y
M2 +y2—1)
z? + y2

0
0
0
1

Vol

If A = 0, there is no solution to this system. Hence A > 0 and the system is equivalent
to

422 — 20z =0
12y —2xy =0 (%)
22+ -1 =0

The first two equations of () give the following couples (z,y) € R?

A

+4/=,0
xe{_ 2,}

A
+A/=,0¢.
ye{_ 6’}



Considering now the third equation, we deduce the solutions to the system (*) are the
couples (x,y) € R?

We now need to select among these couples those who are global minimizers, that is
to say those who give the smallest value of f.

> Among couples (x,y) of the form (1), f(z,y) = % + 3% =3
> Among couples (z,y) of the form (2), f(z,y) = 1.
> Among couples (z,y) of the form (3), f(z,y) = 3.

Conclusion : the solutions to the optimization problem are the couples

(2,y) = <+*/§ +1>.
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Exercise 5 (Optimization with equality and inequality constraints).
Let f:RF — R be defined by

k
For,-ope) = Y, p3-
=1

Maximize f on the simplex Ay of R¥

k
Ay = {p:(pl,...,pk)eRk | pi =0 for all 4, and Zpi:l}'
i=1

Correction.

1. We start by showing the existence of solutions to the problem. The function f is conti-
nuous on Ay and Ay is compact : indeed,

k
Ay = (ﬂ hi (1 00,0])> Arat:
1=1

where for any i € {1,...,k}, for any p e R¥,

hl(p) = —Pi,
k

g(p) = Zpi -1
=1

So Ap is closed. Moreover Aj is bounded because it is included in
{p=(p1,....ox) eRF |0 <p; < 1}.
We deduce that f reaches its maximum on Ay.

2. Let us find the solutions to this problem.

> f, (hi)1<i<k and g are continuously differentiable,



> Mangasarian-Fromovitz’s constraint qualification. We check that the
constraints are qualified at all p € Ay. Let p € Aj. Denote

J(p) ={ie{l,....k} [ hi(p) = 0} = {ie{l,....k} [ pi = 0}

Since (0,...,0) ¢ Ay, necessarily, there exists £ € {1,...,k} such that py # 0. Set
ze RF with z; = 1ifi # ¢, 2 = —(k — 1). Then

<Vg(p),Z> =0
Vje J(p), {Vhj(p),z) <O0.

The constraints are therefore qualified at p.

Let p € R¥ be a local minimum of —f on Aj. According to the KKT theorem, there
exist A = (A1,...,Ax) € (RY)¥ and p € R such that

k
—Vf(p)+ uVyg(p) + Z AjVh;(p) =0, (Stationarity condition)
j=1
and
Vie{l,...,q}, Ajhj(p) =0, (Complementary slackness)
and

{ g(p) =0
Vie{l,...,k}, hj(p) <O.

These three conditions boil down to the following system

(Constraints)

Vie{l,...,k}, —2p;i— \i + u =0,
Vie{l,...,k}, \ipi=0,
Vie{l,...,k}, p; =0,
Zf:lpizl-

Let J ={ie {l,...,k} | p; = 0}. Notice again that |J| # k because p = (0,...,0) is
not in Aj. The system of equations implies that

DI —p) = =2
i=1

i.e.
DN = =2+ kp (4)
i€J
Moreover, for all i € J, p; = 0 so from the first equation of the system, i = p. Thus
(4) is rewritten

[ =—2+kp
l.e.
B 2
T
We deduce
B 0 ifielJ 5
pi = k%lﬂ otherwise . (5)



Thus the global maximizers of f on A are to be sought among the p of the form (5),
with [J]| € {0,...,k — 1}. Let us select the p of this form maximizing f. We have

fp) =}

it ]
1

:t]cxi
T e

1
k- T X
B 1
“ET

Thus f is maximal if |J| = k — 1. Finally, the solutions of the optimization problem
are (e;)(1<i<k), Where e; denotes the i-th vector of the canonical basis of R*. In other
words, the solutions are vertices of the simplex.

Exercise 6 (Characterization of SO, (R)).

We denote SO, (R) = {M € R™™™ | M is orthogonal and det(M) = 1} and SL,(R) = {M €
R™ ™ | det(M) = 1}. Show SO, (R) is exactly composed of the matrices of SL,, (R) which minimize
the Euclidean norm of R™*™ i.e.

VM e R™" |M| = /Te(MTM).
Correction 1. We must show that

SO (R) = {M e R™"

Iarf? = int 1P
€SLy (R)
> Existence of a minimizer. Let g: M +— det(M) — 1. Since g is continuous, SL,(R) =
g~ 1({0}) is closed in R™*". In addition, f: M ~ |M]|? is continuous and coercive.
Thus f admits a minimizer on SL,,(R).

> Characterize the minimizers. Let M be a minimizer of f on SL,(R). Then form the
Lagrange multiplier theory, there exists u € R such that

V(M) = pVg(M).

Using the differential of the determinant function, it follows that :

2M = puCom(M), (6)

where Com (M) denotes the comatrix. Applying det on both sides and using det(M) =
1 yields

Hence p1 = 2 or = —2. Now, multiplying (6) by M ", we obtain :

2MMT = pCom(M)M™
= ul,.



Taking the trace on both sides implies that p > 0. Finally g = 2, and MM T = 1,,.
Thus M € SO, (R).

> Check. Conversely, let M € SO, (R). Then
IM|?* = Te(M M) = n.

Thus f in constant on SO, (R). Since we know f has at least one minimizer in SO, (R),
we deduce that any matrix of SO, (R) is a minimizer of f.
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