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Optimization – Exercises

Day 1

Let pH, x¨, ¨yq be a real Hilbert space. We denote } ¨ } the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).
Let f : H ›Ñ R be a twice differentiable function. Show that if x is a local minimizer of f , then

rfpxq “ 0

r
2
fpxq © 0

Is the first order condition a sufficient condition for x to be a local minimizer ? If no, give an

example. What assumption can you make for this condition to be an equivalence ?

Correction.

B First order necessary condition. Suppose x is a local minimizer of f . Then there exists

r ° 0 such that for all y P Bpx, rq, fpyq • fpxq. Let h P H and t ° 0 such that

x ` th P Bpx, rq. We have

fpx ` thq “ fpxq ` xrfpxq, thy ` optq.

Then

xrfpxq, hy ` op1q “ fpx ` thq ´ fpxq
t

.

Since fpx ` thq ´ fpxq • 0 and t ° 0, we get

xrfpxq, hy ` op1q • 0.

Letting t tend toward 0`
,

xrfpxq, hy • 0.

The same reasoning can be done with t † 0, yielding

xrfpxq, hy § 0.

Finally, forall h P H,

xrfpxq, hy “ 0,

thus rfpxq “ 0.

B Second order necessary condition. Suppose x is a local minimizer of f . Then there

exists r ° 0 such that for all y P Bpx, rq, fpyq • fpxq. Let h P H and t ° 0 such that

x ` th P Bpx, rq.
Using second order Taylor-Young’s expansion :

fpx ` thq “ fpxq ` txrfpxq, hy ` t
2

2
xh,r2

fpxqhy ` opt2q

“ fpxq ` t
2

2
xh,r2

fpxqhy ` opt2q,
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where we used the first order necessary condition. Dividing the inequality by t
2{2 and

letting t tend toward 0, it follows form the fact that x is a local mimimizer that

xh,r2
fpxqhy • 0.

This last inequality is true for all h P H and proves the property.

The converse property does not hold generally : consider f : x fiÑ x
3

and x “ 0 for instance.

The first order condition becomes a necessary and sufficient condition when f

is convexe. Moreover, il this case, local minimizers are global minimizers.

Exercise 2 (Caracterizations of convex functions).
Let f : H ›Ñ R be a twice differentiable function. Show the following equivalences :

1. f is convex if, and only if,

@px, yq P H ˆ H, fpyq • fpxq ` xrfpxq | y ´ xy.
2. f is convex if, and only if,

@x P H, r
2
fpxq © 0,

where r
2
fpxq is the hessian of f at x.

Correction.

1. ñ Suppose f is convex. Let px, yq P H ˆ H. Since f is differentiable, we have for all

t Ps0, 1s :

fpx ` tpy ´ xqq “ fpxq ` t xrfpxq, y ´ xy ` optq.

Moreover, using the convexity of f ,

fpx ` tpy ´ xqq § p1 ´ tqfpxq ` tfpyq.

It follows that

tfpyq • tfpxq ` t xrfpxq, y ´ xy ` optq.

Dividing the inequality by t ° 0 and letting t tend toward 0, we finally get

fpyq • fpxq ` xrfpxq, y ´ xy.

 Let px, yq P H ˆ H and t P r0, 1s. Let z “ x ` tpy ´ xq. We have

fpxq ´ fpzq • xrfpzq,´tpy ´ xqy
fpyq ´ fpzq • xrfpzq, p1 ´ tqpy ´ xqy.

Multiplying the first inequality by p1 ´ tq and the second by t, we get

p1 ´ tqfpxq ` tfpyq ´ fpzq • 0,

which is the desired result.

2. ñ Suppose f is convex. Let x P H, h P H, t ° 0. It follows form second order

Taylor-Young’s formula :

fpx ` thq ´ fpxq ´ txrfpxq, hy “ t
2

2
xh,r2

fpxqhy ` opt2q • 0.
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Simplifying by t
2{2, and letting t tend toward 0, we finally get

xh,r2
fpxqhy • 0.

 " We did not suppose f is a twice continuously differentiable function. Thus, we

cannot use Taylor in its integral from. However, we can apply second order Taylor-

Lagrange’s expansion to the function � : t fiÑ fpx ` tpy ´ xqq : there exists t
˚ P r0, 1s

such that

�p1q “ �p0q ` �1p0q ` 1

2
�2pt˚q,

i.e.

fpyq “ fpxq ` xrfpxq, y ´ xy ` 1

2
xy ´ x,r

2
fpx ` t

˚py ´ xqqpy ´ xqy.

The hypothesis r
2
f © 0 finally gives

fpyq ´ fpxq • xrfpxq, y ´ xy,

which is equivalent to the convexity of f .

Exercise 3 (Squared distance function).
Let A be a nonempty closed convex subset of H. We consider the function “squared distance to

A” defined for all x P H by

gpxq “ inf
yPA

}x ´ y}2.

1. Show that g is convex.

2. Show that g is Fréchet differentiable, with rgpxq “ 2px ´ pApxqq, where pA denotes the

projection on A.

Correction.

1. Let px1, x2q P H
2

and t P r0, 1s. Since A is nonempty closed and convex, the projection

pA is well defined. Using that tpApx1q ` p1 ´ tqpApx2q P A, it follows that

gptx1 ` p1 ´ tqx2q § }tx1 ` p1 ´ tqx2 ´ ptpApx1q ` p1 ´ tqpApx2qq}2,
“ }tpx1 ´ pApx1qq ` p1 ´ tqpx2 ´ pApx2qq}2,
§ t}x1 ´ pApx1q}2 ` p1 ´ tq}x2 ´ pApx2q}2,
“ tgpx1q ` p1 ´ tqgpx2q.

2. Let px, hq P H,

gpx ` hq “ }px ` hq ´ pApx ` hq}2,
“ }x ´ pApxq ` pApxq ´ pApx ` hq ` h}2,
“ gpxq ` 2xx ´ pApxq, pApxq ´ pApx ` hq ` hy ` }pApxq ´ pApx ` hq ` h}2,
“ gpxq ` x2px ´ pApxqq, hy ` ✓px, hq,

where

✓px, hq “ 2xx ´ pApxq, pApxq ´ pApx ` hqy ` }pApxq ´ pApx ` hq ` h}2.
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Let us prove that ✓px, hq “ op}h}q. By definition of the gradient operator, this will

conclude the proof. First, recall the following characterization of the projection :

Property. For all x P H,

@y P A, xx ´ pApxq, y ´ pApxqy § 0

Using this property, we deduce that

0 § ✓px, hq.

Moreover,

✓px, hq “ 2xx´pApx ` hq ` pApx ` hq ´ pApxq, pApxq ´ pApx ` hqy
` }pApxq ´ pApx ` hq ` h}2

§ 2xx ´ pApx ` hq, pApxq ´ pApx ` hqy ` }pApxq ´ pApx ` hq ` h}2,
“ 2xx`h ´ pApx ` hq, pApxq ´ pApx ` hqy ´ 2xh, pApxq ´ pApx ` hqy

` }pApxq ´ pApx ` hq ` h}2

§ ´2xh, pApxq ´ pApx ` hqy ` }pApxq ´ pApx ` hq ` h}2.

Finally, using Cauchy-Schwarz inequality and the following well known property of

the projection, one easily derives that 0 § ✓px, hq § cst }h}2.
Property. For all px, yq P H

2
,

}pApxq ´ pApyq} § }x ´ y}.

Exercise 4 (Minimization of a quadratic function).
Let A P S

``
n pRq (set of symmetric positive definite matrices of Rnˆn

) and b P Rn
. Let f be

defined for all x P Rn
by

fpxq “ 1

2
xAx, xy ´ xb, xy.

Show that f admits a unique minimizer and give an expression of this minimizer.

Correction.

B Existence. f is clearly lower-semi-continuous and proper. We show that f is coercive.

Since A P S
``
N pRq, we have

fpxq • 1

2
�min}x}2 ´ xb, xy,

where �min is the smallest eigenvalue of A. It follows from Cauchy-Schwarz inequality

fpxq • 1

2
�min}x}2 ´ }b}}x} ›Ñ

}x}Ñ`8
`8.

We conclude that f admits at least one global minimizer.

B Unicity. f is strictly convex on Rn
since for all x P Rn

,

r
2
fpxq “ A ° 0.

The minimizer is thus unique.

B Expression of the minimizer. Since f is a convex function, the first order condition

is necessary and sufficient : x
˚

is a minimizer of f if, and only if, rfpx˚q “ 0. It follows

that the unique minimizer x
˚

of f is given by

x
˚ “ A

´1
b.
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Exercise 5 (Convex optimization exam 2019).
Let f : Rn ›Ñ R be a convex, differentiable and bounded function on Rn

. Show f is constant.

Correction. We shall show that for all x P Rn
, rfpxq “ 0. It is sufficient to show that for

all h P Rn
,

xrfpxq, hy § 0.

Let x P Rn
and h P Rn

. For all t ° 0, it follows from the convexity of f on Rn
that :

fpx ` thq ´ fpxq • txrfpxq, hy,

then
fpx ` thq ´ fpxq

t
• xrfpxq, hy.

Letting t tend toward `8 and using the fact that f is bounded, we finally get

0 • xrfpxq, hy.

Exercise 6 (About "-minimizers).
Let f : Rn ›Ñ R be a continuous function bounded from below on Rn

. Let " ° 0 and u a

"-minimizer of f , i.e. u satisfies

fpuq § inf
xPRn

fpxq ` ".

Let � ° 0 and consider

g : x P Rn fiÑ gpxq :“ fpxq ` "

�
}x ´ u}.

1. Show there exists v P Rn
which minimizes g on Rn

. Show this point v satisfies the following

conditions :

(i) fpvq § fpuq,
(ii) }u ´ v} § �,

(iii) @x P Rn
, fpvq § fpxq ` "

�}x ´ v}.
2. Suppose in addition that f is differentiable on Rn

. Show that for all ✏ ° 0, there exists

x✏ P Rn
such that

}rfpx✏q} § ✏.

Correction.

1. Function g is continuous, and it is clear that lim}x}Ñ`8 gpxq “ `8 since f is bounded

from below. Hence g admits a minimizer v P Rn
.

(i) By definition of v, for all x P Rn
,

fpvq ` "

�
}v ´ u} § fpxq ` "

�
}x ´ u}. (1)

In particular, for x “ u, we obtain fpxq` "
�}v´u} § fpuq. Therefore fpvq § fpuq.

(ii) Denote by f “ infxPRn fpxq. Then according to (1),

f ` "

�
}v ´ u} § fpuq § f ` ",

which directly implies that }v ´ u} § �.

(iii) From the reverse triangular inequality, }x ´ u} ´ }v ´ u} § }x ´ v}. Now, using

(1), it follows that for all x P Rn
,

fpvq § fpxq ` "

�
}x ´ v}.
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2. Let ✏ ° 0. Fix � “ ✏ and " “ ✏
2
. According to the previous question, there exists

x✏ P Rn
such that

@x P Rn
, fpx✏q § fpxq ` ✏}x ´ x✏}.

For d P Rn
and ↵ ° 0, applying the previous inequality to x “ x✏`↵d and x “ x✏´↵d

yields

fpx✏ ` ↵dq ´ fpx✏q
↵

• ´✏}d},

and
fpx✏ ´ ↵dq ´ fpx✏q

↵
• ´✏}d}.

Letting ↵ Ñ 0`
, it follows that

xrfpx✏q, dy • ´✏}d} and xrfpx✏q,´dy • ´✏}d},

i.e.

|xrfpx✏q, dy| § ✏}d}.
This implies that }rfpx✏q} § ✏.

Exercise 7.
Let O “ S

``
n pRq be the (open) set of symmetric positive definite matrices of Rnˆn

. O is endowed

with the scalar product xU, V y “ TrpUV q. Let A P O and f be defined for all X P O by

fpXq “ TrpX´1q ` TrpAXq.
1. Show there exists a minimizer to f on O. Hint : you may use the inequality TrpUV q •∞n

i“1 �ipUq�n´i`1pV q, where all eigenvalues �1, . . . ,�n are in descending order ; i.e., �1 •
¨ ¨ ¨ • �n.

2. Find the minimizer and the optimal value of f .

Correction.

1. B Continuity. f is continuous as a composition of continuous functions.

B Coercivity. We need to show that (a) lim
}X}Ñ`8
XPO

fpXq “ `8 and (b) for all X P

BO, lim
XÑX
XPO

fpXq “ `8.

(a) is clear since fpXq • TrpAXq • ∞n
i“1 �ipAq�n´i`1pXq ›Ñ

}X}Ñ`8
`8.

(b) Let X P BO. Then �npXq “ 0. If }X ´X} ›Ñ 0, then �npXq ›Ñ 0`
. Hence,

fpXq • TrpX´1q “
nÿ

i“1

1

�ipXq ›Ñ
}X´X}Ñ0

`8. (2)

Therefore, f admits a global minimizer.

2. If X
˚

is a minimizer of f on O, then dfpX˚q “ 0. We first start computing the

differential of f at X. Let H P O such that X ` H P O. Recall that � : X fiÑ X
´1

is

differentiable and that its differential is

d�pXqpHq “ ´X
´1

HX
´1

.

Now, using the chain rule,

dfpXqpHq “ Trp´X
´1

HX
´1q ` TrpAHq

“ x´pX´1q2 ` A,Hy.
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It follows that dfpX˚q “ 0 is equivalent to ´pX˚´1q2 ` A “ 0, i.e.,

X
˚ “ A

´1{2

Remark : Since A is positive symetric, A
´1{2

is uniquely defined.

Finally, the optimal value of f is

F pX˚q “ TrpA1{2q ` TrpA1{2q,
“ 2TrpA1{2q.

Exercise 8 (Penalty method).
Let F : Rn ›Ñ R be a lower semi-continuous function, coercive on Rn

. Let C be a closed set of

Rn
with dompfq X C ‰ ?. We seek to solve the constrained problem

minimize
xPRn

F pxq (P)

s.t. x P C.

Let R : Rn ›Ñ R`
be a lower semi-continuous function such that

Rpxq “ 0 ñ x P C.

R is called penalty function as it assigns a positive cost to any point that is not in the constraint

set C. Let p�kqkPN be a nondecreasing sequence of positive reals satisfying limkÑ`8 �k “ `8.

We denote by (Pk) the following penalized problem :

minimize
xPRn

F�kpxq :“ F pxq ` �kRpxq. (Pk)

Show that :

1. For all k P N, (Pk) has at least one solution xk.

2. The sequence pxkqnPN is bounded.

3. Any cluster point of pxkqkPN is a solution to (P).

4. What can we say if F is strictly convex ?

Correction.

1. Let n P N. Since R is positive and �k ° 0, we have

@x P Rn
, F�kpxq • F pxq.

Thus F�k is coercive, l.s.c. and proper on the closed set C : there exists at least one

solution to (Pk).

2. Let x P C. Then for all n • 0, F�kpxq “ F pxq. Moreover, by definition of xk,

xk P lev§F�k pxqF�k “ lev§F pxqF�k Ä lev§F pxqF,

last inclusion being a consequence of

@x P Rn
, F�kpxq • F pxq.

Since F is coercive, lev§F pxqF is bounded. Therefore pxkqkPN is bounded.

3. Because R
n

is of finite dimension, we can extract a subsequence pxkj qjPN converging

to x
˚ P Rn

. We must show that x P C, F px˚q § F pxq and x
˚ P C.
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B Show @x P C, F px˚q § F pxq.
We have previously shown that for all x P C, for all k P N,

F pxkj q § F pxq.

Since F is l.s.c.,

F px˚q § lim F pxkj q § F pxq.
B Show x

˚ P C.

We have for all j P N,

F�kj
pxkj q “ F pxkj q ` �kjRpxkj q

“ F�0pxkj q ` p�kj ´ �0qRpxkj q
• inf F�0 ` p�kj ´ �0qRpxkj q,

thus

@x P C, 0 § Rpxkj q §
F�kj

pxkj q ´ inf F�0

�kj ´ �0

§ F pxq ´ inf F�0

�kj ´ �0
.

Passing to the limit infinimum when k Ñ `8, the right hand side term goes to

0 and the left hand side one to Rpx˚q (because R is l.s.c.). It follows that

Rpx˚q “ 0.

This proves that x
˚ P C.

Finally x
˚

is a solution to (P).

4. If F is strictly convex, there is an unique solution to problem (P). Hence, pxkqkPN is a

bounded sequence with a single cluster point. We can conclude that pxkqkPN converges.
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Optimization – Exercises

Day 2

Exercise 1 (Convergence fixed step gradient descent algorithm).

For all x P Rn
we define the function f by

fpxq “ 1

2
xAx, xy ´ xb, xy,

where A P S``
n pRq, with eigenvalues p�iq1§i§n verifying

0 † �1 § . . . § �n,

and b P Rn
. It has already been seen in exercise 4 that f admits a unique minimizer x

˚
, which

is the solution to the linear system Ax “ b.

The fixed step gradient descent algorithm is given by

"
x0 P Rn

,

xk`1 “ xk ´ �rfpxkq.

Show the algorithm converges to x
˚

for any step � P
ı
0,

2
�n

”
. Give the step � that ensures the

fastest convergence.

Correction. Recall } ¨ } denotes the euclidian norm of Rn
. Let k P N˚

. By definition of

pxkqkPN

}xk`1 ´ x
˚} “ }xk ´ �rfpxkq ´ x

˚}
“ }pxk ´ x

˚q ´ p�rfpxkq ´ �rfpx˚qq},

since x
˚

verifies rfpx˚q “ 0. It follows that

}xk`1 ´ x
˚} “ }pxk ´ x

˚q ´ �pAxk ´ Ax
˚q}

“ }pIn ´ �Aqpxk ´ x
˚q}

§ }In ´ �A}}xk ´ x
˚}.

Since In ´ �A is symmetric, }In ´ �A} “ ⇢pIn ´ �Aq, where ⇢pXq “
supt|�|, � eigenvalue of Xu. Hence

}In ´ �A} “ max
1§j§n

t|1 ´ ��j |u

Now if � P
ı
0,

2
�n

”
, we easily show that for all i P t1, . . . , nu

1 ° 1 ´ ��i ° ´1,

i.e.

|1 ´ ��i| † 1.

1



Then

}In ´ �A} † 1.

By recurrence

}xk ´ x
˚} § }In ´ �A}k}x0 ´ x

˚} ›Ñ
kÑ`8

0,

which proves the algorithm converges.

Best step �. To find the best step � P
ı
0,

2
�n

”
, we first note that

}In ´ �A} “ maxt|1 ´ ��1|, |1 ´ ��n|u.

Then, drawing the function � fiÑ maxt|1 ´ ��1|, |1 ´ ��n|u, we observe the minimum is

reached at � “ 1
�1`�n

. Indeed, the intersection point �opt of the line � fiÑ 1 ´ ��1 with the

line � fiÑ ��n ´ 1 can be found solving

1 ´ ��1 “ ��n ´ 1.

This value of � ensures the fastest convergence.

Exercise 2 (Convergence of Uzawa method).

Let f : Rn ›Ñ R be a differentiable ↵-strongly convex function and let C P Rmˆn
, d P Rm

. We

2



propose to study the convergence of Uzawa method towards a solution to the following problem :

minimize
xPRn

fpxq
subject to Cx § d,

(P)

where the set tx P RN | Cx § du is assumed to be nonempty. Let ⇢ ° 0. Uzawa algorithm

generates sequences pxkqkPN P pRnqN and p�kqkPN P pRmqN according to the following iterations :

#
xk “ argmin

xPRn
fpxq ` x�k, Cx ´ dy,

�k`1 “ max p�k ` ⇢pCxk ` dq, 0q .

1. Explain why Problem pPq admits a unique solution and why the algorithm is well defined.

2. (i) Write the Lagrangian L : Rn ˆ Rm ›Ñ R for Problem pPq.
(ii) Show that for any x P Rn

,

˜
�

˚ “ argmax

�Pr0,`8qm
Lpx,�q

¸
ñ pp@⇢ ° 0q �

˚ “ p`p�˚ ` ⇢pCx ´ dqqq ,

where p` denotes the projection on r0,`8qm.

(iii) Let px˚
,�

˚q be a saddle point of L. Show that the following holds :

"
rfpxkq ´ rfpx˚q ` C

Jp�k ´ �q “ 0

}�k`1 ´ �
˚} § }�k ´ �

˚ ` ⇢Cpxk ´ x
˚q}. (‹)

3. Using (‹), show the convergence of the sequence pxkqkPN to x
˚

when ⇢ satisfies

0 † ⇢ † 2↵

}C}2 . (‹‹)

Correction.

1. f is strongly convex, continuous, and the set tx P RN | Cx § du is nonempty, closed.

Therefore, Problem pPq admits a unique solution.

If you don’t already know this result, it can easily be proven the following way, using

the differentiability of f .

— Existence. The strong convexity of f implies that for all px, yq P pRnq2 (see

Exercise 3 in class notes),

fpxq • fpyq ` xrfpyq, x ´ yy ` ↵

2
}x ´ y}2,

• fpyq ´ }rfpyq}}x ´ y} ` ↵

2
}x ´ y}2,

where we used Cauchy-Schwarz inequality. The minoring term is a polynomial

function of degree 2 with a positive dominant coefficient. We deduce that f is

coercive. Since the set tx P RN | Cx § du is nonempty, and closed, the existence

of a global minimizer follows from the course.

— Unicity. A strongly convex function is strictly convex.

2. (i) For all px,�q P Rn ˆ r0,`8qm,

Lpx,�q “ fpxq ` �
JpCx ´ dq.
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(ii) Let x P Rn
,

˜
�

˚ “ argmax

�Pr0,`8qm
Lpx,�q

¸
ñ
Euler

p@� P r0,`8qm xr2Lpx,�˚q,� ´ �
˚y § 0q

ñ p@� P r0,`8qm, @⇢ ° 0 x⇢pCx ´ dq,� ´ �
˚y § 0q

ñ p@� P r0,`8qm, @⇢ ° 0 x�˚ ` ⇢pCx ´ dq´�
˚
,� ´ �

˚y § 0q
ñ
proj.

p@⇢ ° 0 �
˚ “ p`p�˚ ` ⇢pCx ´ dqqq .

(iii) Since px˚
,�

˚q is a saddle point of L, the following holds :

x
˚ “ inf

xPRn
Lpx,�˚q and �

˚ “ sup
�•0

Lpx˚
,�q.

We deduce from the previous question that

"
rfpx˚q ` C

J
�

˚ “ 0,

�
˚ “ p`p�˚ ` ⇢pCx

˚ ´ dqq.
It is clear from the definition of the algorithm that we have similar relations for

the iterates :

"
rfpxkq ` C

J
�k “ 0,

�k`1 “ p`p�k ` ⇢pCxk ´ dqq.
Finally, combining these inequalities and recalling that the projection operator

p` is 1-Lipschitz, we obtain (‹).

3. For all k P N,

}�k`1 ´ �
˚}2 § }�k ´ �

˚ ` ⇢Cpxk ´ x
˚q}2

“ }�k ´ �
˚}2 ` ⇢

2}Cpxk ´ x
˚q}2 ` 2⇢xCJp�k ´ �

˚q, xk ´ x
˚y

“ }�k ´ �
˚}2 ` ⇢

2}Cpxk ´ x
˚q}2 ` 2⇢xrfpx˚q ´ rfpxkq, xk ´ x

˚y.

Now, since f is ↵-strongly convex,

@px, yq P pRnq2 xrfpxq ´ rfpyq, x ´ yy • ↵}x ´ y}2.

Therefore,

}�k`1 ´ �
˚}2 § }�k ´ �

˚}2 ` ⇢
2}C}2}xk ´ x

˚}2 ´ ↵2⇢}xk ´ x
˚}2,

“ }�k ´ �
˚}2 ` ⇢p⇢}C}2 ´ 2↵q}xk ´ x

˚}2.

Therefore, when the condition (‹‹) is met, the sequence p}�k´�
˚}qkPN is decreasing and

bounded from below, thus it converges. It follows that }�k´�
˚}2´}�k`1´�

˚}2 ›Ñ
kÑ`8

0

and

⇢p2↵ ´ ⇢}C}2q}xk ´ x
˚} § }�k ´ �

˚}2 ´ }�k`1 ´ �
˚}2 ›Ñ

kÑ`8
0.

Additional remarks.
— If problem pPq is feasible and px˚

,�
˚q is a saddle point of L, then x

˚
is a solution to

the primal problem pPq.
— Let x

˚
be a solution to the primal problem pPq. Then, for a convex problem (convex

objective function + affine constraint functions) for which the constraints are qualified

(Slater), there exists a �
˚ P r0,`8qm such that px˚

,�
˚q is a saddle point of L. See

class notes, page 11.
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Exercise 3 (Optimization with equality constraints).

Find the points px, y, zq de R3
which belong to H1 and H2 and which are the closest to the origin.

pH1q : 3x ` y ` z “ 5,

pH2q : x ` y ` z “ 1.

1. Write the problem as an optimization problem.

2. What can you say about existence of solutions ? Unicity ?

3. Solve the optimization problem using the Slater conditions.

Correction.

1. We can write the problem as

minimize
px,y,zqPR3

fpx, y, zq

subject to g1px, y, zq “ 0

g2px, y, zq “ 0,

with fpx, y, zq :“ x
2`y

2`z
2
, g1px, y, zq :“ 3x`y`z´5 and g2px, y, zq :“ x`y`z´1.

2. Let

C “ tpx, y, zq P R3 | g1px, y, zq “ 0 and g2px, y, zq “ 0u.
The problem is feasible because dompfq X C ‰ ? (notice p2, 0,´1q P C). Moreover,

fonction f is coercive, lower semi-continuous on the closed set C, hence there exists

at least one global minimizer. Finally, f is strictly convex on the convex set C, the

minimizer is therefore unique.

3. — f is convex, continuously differentiable,

— g1 et g2 are affine,

— Slater condition holds : consider the point px, y, zq “ p2, 0,´1q.
We deduce from KKT theorem in the convexe case (see page 11 in the course) that

px, y, zq is a minimizer of f over C if, and only if, there exists pµ1, µ2q P R2
such that

rfpx, y, zq ` µ1rg1px, y, zq ` µ2rg2px, y, zq “ 0, (Stationarity condition)

and

g1px, y, zq “ 0 et g2px, y, zq “ 0. (Constraints)

These two conditions are equivalent to the following system of equations

$
’’’’&

’’’’%

2x ` 3µ1 ` µ2 “ 0

2y ` µ1 ` µ2 “ 0

2z ` µ1 ` µ2 “ 0

3x ` y ` z “ 5

x ` y ` z “ ´1.

The unique solution of this system is

$
’’’’&

’’’’%

x “ 0

y “ ´1{2
z “ ´1{2
µ1 “ ´7{2
µ2 “ 9{2.

Conclusion : the unique minimizer of f over C is

px̂, ŷ, ẑq “ p2,´1{2,´1{2q.

5



Exercise 4 (Optimization with inequality constraints).

Solve the following optimization problem :

minimize
px,yqPR2

x
4 ` 3y

4

subject to x
2 ` y

2 • 1.

Correction. Let fpx, yq :“ x
4 ` 3y

4
, hpx, yq :“ ´x

2 ´ y
2 ` 1 and

C “ tx P R2 | hpx, yq § 0u.
1. The problem is feasible since C X dompfq ‰ ?. Function f is coercive since

fpx, yq • p2x2 ´ 1q ` 3py2 ´ 1q
• 2}px, yq}2 ´ 4 ›Ñ

}px,yq}Ñ`8
`8.

Moreover f is l.s.c on the closed set C : this ensures the existence of global minimizer

to f on C.

" We cannot say anything about the unicity of the solution even though f is strictly

convex on Rn
, because C is not convex.

2. To find the solution(s) to the problem, we are going to apply KKT theorem. It will

give us a necessary optimality condition.

— f and h are continuously differentiable.

— The Mangasarian Fromovitz qualification of constraints holds for all px, yq P C

because rhpx, yq “ p2x, 2yq ‰ 0 for all px, yq P C.

The hypothesis of KKT theorem are verified. Let x be a local minimizer of f on C :

there exists � P R`
such that

rfpxq ` �rhpxq “ 0, (Stationarity condition)

and

�hpxq “ 0, (Complementary slackness condition)

and

hpxq § 0. (Constraints)

These three conditions are equivalent to

$
’’&

’’%

4x
3 ´ 2�x “ 0

12y
3 ´ 2�y “ 0

�px2 ` y
2 ´ 1q “ 0

x
2 ` y

2 • 1.

If � “ 0, there is no solution to this system. Hence � ° 0 and the system is equivalent

to $
&

%

4x
3 ´ 2�x “ 0

12y
3 ´ 2�y “ 0

x
2 ` y

2 ´ 1 “ 0

(‹)

The first two equations of (‹) give the following couples px, yq P R2

x P
#

˘
c

�

2
, 0

+

y P
#

˘
c

�

6
, 0

+
.
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Considering now the third equation, we deduce the solutions to the system (‹) are the

couples px, yq P R2

ˆ
˘

?
3

2
,˘1

2

˙
(1)

p˘1, 0q (2)

p0,˘1q . (3)

We now need to select among these couples those who are global minimizers, that is

to say those who give the smallest value of f .

B Among couples px, yq of the form (1), fpx, yq “ 9
16 ` 3

1
16 “ 3

4 .

B Among couples px, yq of the form (2), fpx, yq “ 1.

B Among couples px, yq of the form (3), fpx, yq “ 3.

Conclusion : the solutions to the optimization problem are the couples

px, yq “
ˆ

˘
?
3

2
,˘1

2

˙
.

Exercise 5 (Optimization with equality and inequality constraints).

Let f : Rk ›Ñ R be defined by

fpp1, . . . , pkq “
kÿ

i“1

p
2
i .

Maximize f on the simplex ⇤k of Rk

⇤k :“
#
p “ pp1, . . . , pkq P Rk | pi • 0 for all i, and

kÿ

i“1

pi “ 1

+
.

Correction.

1. We start by showing the existence of solutions to the problem. The function f is conti-

nuous on ⇤k and ⇤k is compact : indeed,

⇤k “
˜

k£

i“1

h
´1
i ps ´ 8, 0sq

¸
£

g
´1pt0uq,

where for any i P t1, . . . , ku, for any p P Rk
,

hippq “ ´pi,

gppq “
kÿ

i“1

pi ´ 1.

So ⇤k is closed. Moreover ⇤k is bounded because it is included in 
p “ pp1, . . . , pkq P Rk | 0 § pi § 1

(
.

We deduce that f reaches its maximum on ⇤k.

2. Let us find the solutions to this problem.

B f , phiq1§i§k and g are continuously differentiable,
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B Mangasarian-Fromovitz’s constraint qualification. We check that the

constraints are qualified at all p P ⇤k. Let p P ⇤k. Denote

Jppq “ ti P t1, . . . , ku | hippq “ 0u “ ti P t1, . . . , ku | pi “ 0u

Since p0, . . . , 0q R ⇤k, necessarily, there exists ` P t1, . . . , ku such that p` ‰ 0. Set

z P Rk
with zi “ 1 if i ‰ `, z` “ ´pk ´ 1q. Then

xrgppq, zy “ 0

@j P Jppq, xrhjppq, zy † 0.

The constraints are therefore qualified at p.

Let p P Rk
be a local minimum of ´f on ⇤k. According to the KKT theorem, there

exist � “ p�1, . . . ,�kq P pR`qk and µ P R such that

´ rfppq ` µrgppq `
kÿ

j“1

�jrhjppq “ 0, (Stationarity condition)

and

@j P t1, . . . , qu, �jhjppq “ 0, (Complementary slackness)

and "
gppq “ 0

@j P t1, . . . , ku, hjppq § 0.
(Constraints)

These three conditions boil down to the following system

$
’’&

’’%

@i P t1, . . . , ku, ´2pi ´ �i ` µ “ 0,

@i P t1, . . . , ku, �ipi “ 0,

@i P t1, . . . , ku, pi • 0,∞k
i“1 pi “ 1.

Let J “ ti P t1, . . . , ku | pi “ 0u. Notice again that |J | ‰ k because p “ p0, . . . , 0q is

not in ⇤k. The system of equations implies that

nÿ

i“1

p�i ´ µq “ ´2

i.e. ÿ

iPJ
�i “ ´2 ` kµ (4)

Moreover, for all i P J , pi “ 0 so from the first equation of the system, i “ µ. Thus

(4) is rewritten

|J |µ “ ´2 ` kµ

i.e.

µ “ 2

k ´ |J | .

We deduce

pi “
"

0 if i P J
1

k´|J | otherwise .
(5)
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Thus the global maximizers of f on ⇤k are to be sought among the p of the form (5),

with |J | P t0, . . . , k ´ 1u. Let us select the p of this form maximizing f . We have

fppq “
ÿ

iRJ
p
2
i

“ |Jc| ˆ 1

pk ´ |J |q2

“ pk ´ |J |q ˆ 1

pk ´ |J |q2

“ 1

k ´ |J | .

Thus f is maximal if |J | “ k ´ 1. Finally, the solutions of the optimization problem

are peiqp1§i§kq, where ei denotes the i-th vector of the canonical basis of Rk
. In other

words, the solutions are vertices of the simplex.

Exercise 6 (Characterization of SOnpRq).
We denote SOnpRq “ tM P Rnˆn | M is orthogonal and detpMq “ 1u and SLnpRq “ tM P
Rnˆn | detpMq “ 1u. Show SOnpRq is exactly composed of the matrices of SLnpRq which minimize

the Euclidean norm of Rnˆn
, i.e.

@M P Rnˆn
, }M} “

b
TrpMJMq.

Correction 1. We must show that

SOnpRq “
"
M P Rnˆn

ˇ̌
ˇ }M}2 “ inf

APSLnpRq
}A}2

*
.

B Existence of a minimizer. Let g : M fiÑ detpMq ´ 1. Since g is continuous, SLnpRq “
g

´1pt0uq is closed in Rnˆn
. In addition, f : M fiÑ }M}2 is continuous and coercive.

Thus f admits a minimizer on SLnpRq.
B Characterize the minimizers. Let M be a minimizer of f on SLnpRq. Then form the

Lagrange multiplier theory, there exists µ P R such that

rfpMq “ µrgpMq.

Using the differential of the determinant function, it follows that :

2M “ µCompMq, (6)

where CompMq denotes the comatrix. Applying det on both sides and using detpMq “
1 yields

2
n “ µ

n
detpCompMqq

“ µ
n
detppM´1qJq

“ µ
n 1

detpMq
“ µ

n
.

Hence µ “ 2 or µ “ ´2. Now, multiplying (6) by M
J
, we obtain :

2MM
J “ µCompMqMJ

“ µIn.
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Taking the trace on both sides implies that µ ° 0. Finally µ “ 2, and MM
J “ In.

Thus M P SOnpRq.
B Check. Conversely, let M P SOnpRq. Then

}M}2 “ TrpMJ
Mq “ n.

Thus f in constant on SOnpRq. Since we know f has at least one minimizer in SOnpRq,
we deduce that any matrix of SOnpRq is a minimizer of f .
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