Optimization - Exercises

Day 1

Let $(H,\langle\cdot, \cdot\rangle)$ be a real Hilbert space. We denote $\|\cdot\|$ the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show that if x is a local minimizer of f, then

$$
\begin{aligned}
& \nabla f(x)=0 \\
& \nabla^{2} f(x) \geq 0
\end{aligned}
$$

Is the first order condition a sufficient condition for x to be a local minimizer? If no, give an example. What assumption can you make for this condition to be an equivalence?

Correction.

 $r>0$ such that for all $y \in \mathcal{B}(x, r), f(y) \geqslant f(x)$. Let $h \in H$ and $t>0$ such that $x+t h \in \mathcal{B}(x, r)$. We have

$$
f(x+t h)=f(x)+\langle\nabla f(x), t h\rangle+o(t)
$$

Then

$$
\langle\nabla f(x), h\rangle+o(1)=\frac{f(x+t h)-f(x)}{t}
$$

Since $f(x+t h)-f(x) \geqslant 0$ and $t>0$, we get

$$
\langle\nabla f(x), h\rangle+o(1) \geqslant 0
$$

Letting t tend toward 0^{+},

$$
\langle\nabla f(x), h\rangle \geqslant 0
$$

The same reasoning can be done with $t<0$, yielding

$$
\langle\nabla f(x), h\rangle \leqslant 0
$$

Finally, forall $h \in H$,

$$
\langle\nabla f(x), h\rangle=0
$$

thus $\nabla f(x)=0$.
\triangleright Second order necessary condition. Suppose x is a local minimizer of f. Then there exists $r>0$ such that for all $y \in \mathcal{B}(x, r), f(y) \geqslant f(x)$. Let $h \in H$ and $t>0$ such that $x+t h \in \mathcal{B}(x, r)$.
Using second order Taylor-Young's expansion :

$$
\begin{aligned}
f(x+t h) & =f(x)+t\langle\nabla f(x), h\rangle+\frac{t^{2}}{2}\left\langle h, \nabla^{2} f(x) h\right\rangle+o\left(t^{2}\right) \\
& =f(x)+\frac{t^{2}}{2}\left\langle h, \nabla^{2} f(x) h\right\rangle+o\left(t^{2}\right),
\end{aligned}
$$

where we used the first order necessary condition. Dividing the inequality by $t^{2} / 2$ and letting t tend toward 0 , it follows form the fact that x is a local mimimizer that

$$
\left\langle h, \nabla^{2} f(x) h\right\rangle \geqslant 0
$$

This last inequality is true for all $h \in H$ and proves the property.
The converse property does not hold generally : consider $f: x \mapsto x^{3}$ and $x=0$ for instance. The first order condition becomes a necessary and sufficient condition when f is convexe. Moreover, il this case, local minimizers are global minimizers.

Exercise 2 (Caracterizations of convex functions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show the following equivalences :

1. f is convex if, and only if,

$$
\forall(x, y) \in H \times H, f(y) \geqslant f(x)+\langle\nabla f(x) \mid y-x\rangle
$$

2. f is convex if, and only if,

$$
\forall x \in H, \nabla^{2} f(x) \geq 0
$$

where $\nabla^{2} f(x)$ is the hessian of f at x.

Correction.

1. \Rightarrow Suppose f is convex. Let $(x, y) \in H \times H$. Since f is differentiable, we have for all $t \in] 0,1]$:

$$
f(x+t(y-x))=f(x)+t\langle\nabla f(x), y-x\rangle+o(t)
$$

Moreover, using the convexity of f,

$$
f(x+t(y-x)) \leqslant(1-t) f(x)+t f(y)
$$

It follows that

$$
t f(y) \geqslant t f(x)+t\langle\nabla f(x), y-x\rangle+o(t)
$$

Dividing the inequality by $t>0$ and letting t tend toward 0 , we finally get

$$
f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle
$$

\Leftarrow Let $(x, y) \in H \times H$ and $t \in[0,1]$. Let $z=x+t(y-x)$. We have

$$
\begin{aligned}
& f(x)-f(z) \geqslant\langle\nabla f(z),-t(y-x)\rangle \\
& f(y)-f(z) \geqslant\langle\nabla f(z),(1-t)(y-x)\rangle
\end{aligned}
$$

Multiplying the first inequality by $(1-t)$ and the second by t, we get

$$
(1-t) f(x)+t f(y)-f(z) \geqslant 0
$$

which is the desired result.
2. \Rightarrow Suppose f is convex. Let $x \in H, h \in H, t>0$. It follows form second order Taylor-Young's formula:

$$
f(x+t h)-f(x)-t\langle\nabla f(x), h\rangle=\frac{t^{2}}{2}\left\langle h, \nabla^{2} f(x) h\right\rangle+o\left(t^{2}\right) \geqslant 0
$$

Simplifying by $t^{2} / 2$, and letting t tend toward 0 , we finally get

$$
\left\langle h, \nabla^{2} f(x) h\right\rangle \geqslant 0
$$

$\Leftarrow \leqq$ We did not suppose f is a twice continuously differentiable function. Thus, we cannot use Taylor in its integral from. However, we can apply second order TaylorLagrange's expansion to the function $\Phi: t \mapsto f(x+t(y-x))$: there exists $t^{*} \in[0,1]$ such that

$$
\Phi(1)=\Phi(0)+\Phi^{\prime}(0)+\frac{1}{2} \Phi^{\prime \prime}\left(t^{*}\right)
$$

i.e.

$$
f(y)=f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2}\left\langle y-x, \nabla^{2} f\left(x+t^{*}(y-x)\right)(y-x)\right\rangle
$$

The hypothesis $\nabla^{2} f \geq 0$ finally gives

$$
f(y)-f(x) \geqslant\langle\nabla f(x), y-x\rangle
$$

which is equivalent to the convexity of f.

Exercise 3 (Squared distance function).

Let A be a nonempty closed convex subset of H. We consider the function "squared distance to A " defined for all $x \in H$ by

$$
g(x)=\inf _{y \in A}\|x-y\|^{2}
$$

1. Show that g is convex.
2. Show that g is Fréchet differentiable, with $\nabla g(x)=2\left(x-\mathrm{p}_{A}(x)\right)$, where p_{A} denotes the projection on A.

Correction.

1. Let $\left(x_{1}, x_{2}\right) \in H^{2}$ and $t \in[0,1]$. Since A is nonempty closed and convex, the projection p_{A} is well defined. Using that $t \mathrm{p}_{A}\left(x_{1}\right)+(1-t) \mathrm{p}_{A}\left(x_{2}\right) \in A$, it follows that

$$
\begin{aligned}
g\left(t x_{1}+(1-t) x_{2}\right) & \leqslant\left\|t x_{1}+(1-t) x_{2}-\left(t \mathrm{p}_{A}\left(x_{1}\right)+(1-t) \mathrm{p}_{A}\left(x_{2}\right)\right)\right\|^{2} \\
& =\left\|t\left(x_{1}-\mathrm{p}_{A}\left(x_{1}\right)\right)+(1-t)\left(x_{2}-\mathrm{p}_{A}\left(x_{2}\right)\right)\right\|^{2} \\
& \leqslant t\left\|x_{1}-\mathrm{p}_{A}\left(x_{1}\right)\right\|^{2}+(1-t)\left\|x_{2}-\mathrm{p}_{A}\left(x_{2}\right)\right\|^{2} \\
& =t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right)
\end{aligned}
$$

2. Let $(x, h) \in H$,

$$
\begin{aligned}
g(x+h) & =\left\|(x+h)-\mathrm{p}_{A}(x+h)\right\|^{2} \\
& =\left\|x-\mathrm{p}_{A}(x)+\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2}, \\
& =g(x)+2\left\langle x-\mathrm{p}_{A}(x), \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\rangle+\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2}, \\
& =g(x)+\left\langle 2\left(x-\mathrm{p}_{A}(x)\right), h\right\rangle+\theta(x, h),
\end{aligned}
$$

where

$$
\theta(x, h)=2\left\langle x-\mathrm{p}_{A}(x), \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)\right\rangle+\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2}
$$

Let us prove that $\theta(x, h)=o(\|h\|)$. By definition of the gradient operator, this will conclude the proof. First, recall the following characterization of the projection :
Property. For all $x \in H$,

$$
\forall y \in A, \quad\left\langle x-\mathrm{p}_{A}(x), y-\mathrm{p}_{A}(x)\right\rangle \leqslant 0
$$

Using this property, we deduce that

$$
0 \leqslant \theta(x, h) .
$$

Moreover,

$$
\begin{aligned}
\theta(x, h)= & 2\left\langle x-\mathrm{p}_{A}(x+h)+\mathrm{p}_{A}(x+h)-\mathrm{p}_{A}(x), \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)\right\rangle \\
& +\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2} \\
\leqslant & 2\left\langle x-\mathrm{p}_{A}(x+h), \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)\right\rangle+\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2}, \\
= & 2\left\langle x+h-\mathrm{p}_{A}(x+h), \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)\right\rangle-2\left\langle h, \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)\right\rangle \\
& +\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2} \\
\leqslant & -2\left\langle h, \mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)\right\rangle+\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(x+h)+h\right\|^{2} .
\end{aligned}
$$

Finally, using Cauchy-Schwarz inequality and the following well known property of the projection, one easily derives that $0 \leqslant \theta(x, h) \leqslant \operatorname{cst}\|h\|^{2}$.
Property. For all $(x, y) \in H^{2}$,

$$
\left\|\mathrm{p}_{A}(x)-\mathrm{p}_{A}(y)\right\| \leqslant\|x-y\| .
$$

Exercise 4 (Minimization of a quadratic function).

Let $A \in \mathcal{S}_{n}^{++}(\mathbb{R})$ (set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$) and $b \in \mathbb{R}^{n}$. Let f be defined for all $x \in \mathbb{R}^{n}$ by

$$
f(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle .
$$

Show that f admits a unique minimizer and give an expression of this minimizer.

Correction.

\triangleright Existence. f is clearly lower-semi-continuous and proper. We show that f is coercive.
Since $A \in \mathcal{S}_{N}^{++}(\mathbb{R})$, we have

$$
f(x) \geqslant \frac{1}{2} \lambda_{\text {min }}\|x\|^{2}-\langle b, x\rangle,
$$

where $\lambda_{\text {min }}$ is the smallest eigenvalue of A. It follows from Cauchy-Schwarz inequality

$$
f(x) \geqslant \frac{1}{2} \lambda_{\min }\|x\|^{2}-\|b\|\|x\| \underset{\|x\| \rightarrow+\infty}{\longrightarrow}+\infty
$$

We conclude that f admits at least one global minimizer.
\triangleright Unicity. f is strictly convex on \mathbb{R}^{n} since for all $x \in \mathbb{R}^{n}$,

$$
\nabla^{2} f(x)=A>0 .
$$

The minimizer is thus unique.
\triangleright Expression of the minimizer. Since f is a convex function, the first order condition is necessary and sufficient : x^{*} is a minimizer of f if, and only if, $\nabla f\left(x^{*}\right)=0$. It follows that the unique minimizer x^{*} of f is given by

$$
x^{*}=A^{-1} b .
$$

Exercise 5 (Convex optimization exam 2019).

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a convex, differentiable and bounded function on \mathbb{R}^{n}. Show f is constant.
Correction. We shall show that for all $x \in \mathbb{R}^{n}, \nabla f(x)=0$. It is sufficient to show that for all $h \in \mathbb{R}^{n}$,

$$
\langle\nabla f(x), h\rangle \leqslant 0 .
$$

Let $x \in \mathbb{R}^{n}$ and $h \in \mathbb{R}^{n}$. For all $t>0$, it follows from the convexity of f on \mathbb{R}^{n} that :

$$
f(x+t h)-f(x) \geqslant t\langle\nabla f(x), h\rangle,
$$

then

$$
\frac{f(x+t h)-f(x)}{t} \geqslant\langle\nabla f(x), h\rangle .
$$

Letting t tend toward $+\infty$ and using the fact that f is bounded, we finally get

$$
0 \geqslant\langle\nabla f(x), h\rangle .
$$

Exercise 6 (About ε-minimizers).

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a continuous function bounded from below on \mathbb{R}^{n}. Let $\varepsilon>0$ and u a ε-minimizer of f, i.e. u satisfies

$$
f(u) \leqslant \inf _{x \in \mathbb{R}^{n}} f(x)+\varepsilon .
$$

Let $\lambda>0$ and consider

$$
g: x \in \mathbb{R}^{n} \mapsto g(x):=f(x)+\frac{\varepsilon}{\lambda}\|x-u\| .
$$

1. Show there exists $v \in \mathbb{R}^{n}$ which minimizes g on \mathbb{R}^{n}. Show this point v satisfies the following conditions :
(i) $f(v) \leqslant f(u)$,
(ii) $\|u-v\| \leqslant \lambda$,
(iii) $\forall x \in \mathbb{R}^{n}, f(v) \leqslant f(x)+\frac{\varepsilon}{\lambda}\|x-v\|$.
2. Suppose in addition that f is differentiable on \mathbb{R}^{n}. Show that for all $\epsilon>0$, there exists $x_{\epsilon} \in \mathbb{R}^{n}$ such that

$$
\left\|\nabla f\left(x_{\epsilon}\right)\right\| \leqslant \epsilon
$$

Correction.

1. Function g is continuous, and it is clear that $\lim _{\|x\| \rightarrow+\infty} g(x)=+\infty$ since f is bounded from below. Hence g admits a minimizer $v \in \mathbb{R}^{n}$.
(i) By definition of v, for all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
f(v)+\frac{\varepsilon}{\lambda}\|v-u\| \leqslant f(x)+\frac{\varepsilon}{\lambda}\|x-u\| . \tag{1}
\end{equation*}
$$

In particular, for $x=u$, we obtain $f(x)+\frac{\varepsilon}{\lambda}\|v-u\| \leqslant f(u)$. Therefore $f(v) \leqslant f(u)$.
(ii) Denote by $\bar{f}=\inf _{x \in \mathbb{R}^{n}} f(x)$. Then according to (1),

$$
\bar{f}+\frac{\varepsilon}{\lambda}\|v-u\| \leqslant f(u) \leqslant \bar{f}+\varepsilon
$$

which directly implies that $\|v-u\| \leqslant \lambda$.
(iii) From the reverse triangular inequality, $\|x-u\|-\|v-u\| \leqslant\|x-v\|$. Now, using (1), it follows that for all $x \in \mathbb{R}^{n}$,

$$
f(v) \leqslant f(x)+\frac{\varepsilon}{\lambda}\|x-v\| .
$$

2. Let $\epsilon>0$. Fix $\lambda=\epsilon$ and $\varepsilon=\epsilon^{2}$. According to the previous question, there exists $x_{\epsilon} \in \mathbb{R}^{n}$ such that

$$
\forall x \in \mathbb{R}^{n}, f\left(x_{\epsilon}\right) \leqslant f(x)+\epsilon\left\|x-x_{\epsilon}\right\|
$$

For $d \in \mathbb{R}^{n}$ and $\alpha>0$, applying the previous inequality to $x=x_{\epsilon}+\alpha d$ and $x=x_{\epsilon}-\alpha d$ yields

$$
\frac{f\left(x_{\epsilon}+\alpha d\right)-f\left(x_{\epsilon}\right)}{\alpha} \geqslant-\epsilon\|d\|
$$

and

$$
\frac{f\left(x_{\epsilon}-\alpha d\right)-f\left(x_{\epsilon}\right)}{\alpha} \geqslant-\epsilon\|d\| .
$$

Letting $\alpha \rightarrow 0^{+}$, it follows that

$$
\left\langle\nabla f\left(x_{\epsilon}\right), d\right\rangle \geqslant-\epsilon\|d\| \text { and }\left\langle\nabla f\left(x_{\epsilon}\right),-d\right\rangle \geqslant-\epsilon\|d\|,
$$

i.e.

$$
\left|\left\langle\nabla f\left(x_{\epsilon}\right), d\right\rangle\right| \leqslant \epsilon\|d\| .
$$

This implies that $\left\|\nabla f\left(x_{\epsilon}\right)\right\| \leqslant \epsilon$.

Exercise 7.

Let $\mathcal{O}=\mathcal{S}_{n}^{++}(\mathbb{R})$ be the (open) set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$. \mathcal{O} is endowed with the scalar product $\langle U, V\rangle=\operatorname{Tr}(U V)$. Let $A \in \mathcal{O}$ and f be defined for all $X \in \mathcal{O}$ by

$$
f(X)=\operatorname{Tr}\left(X^{-1}\right)+\operatorname{Tr}(A X)
$$

1. Show there exists a minimizer to f on \mathcal{O}. Hint : you may use the inequality $\operatorname{Tr}(U V) \geqslant$ $\sum_{i=1}^{n} \lambda_{i}(U) \lambda_{n-i+1}(V)$, where all eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in descending order ; i.e., $\lambda_{1} \geqslant$ $\cdots \geqslant \lambda_{n}$.
2. Find the minimizer and the optimal value of f.

Correction.

1. \triangleright Continuity. f is continuous as a composition of continuous functions.
\triangleright Coercivity. We need to show that (a) $\lim _{\substack{\| \| \rightarrow+\infty \\ X \in \mathcal{O}}} f(X)=+\infty$ and (b) for all $\bar{X} \in$ $\partial \mathcal{O}, \lim _{\substack{X \rightarrow \bar{X} \\ X \in \mathcal{O}}} f(X)=+\infty$.
(a) is clear since $f(X) \geqslant \operatorname{Tr}(A X) \geqslant \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{n-i+1}(X) \underset{\|X\| \rightarrow+\infty}{\longrightarrow}+\infty$.
(b) Let $\bar{X} \in \partial \mathcal{O}$. Then $\lambda_{n}(\bar{X})=0$. If $\|X-\bar{X}\| \longrightarrow 0$, then $\lambda_{n}(X) \longrightarrow 0^{+}$. Hence,

$$
\begin{equation*}
f(X) \geqslant \operatorname{Tr}\left(X^{-1}\right)=\sum_{i=1}^{n} \frac{1}{\lambda_{i}(X)} \underset{\|X-\bar{X}\| \rightarrow 0}{\longrightarrow}+\infty \tag{2}
\end{equation*}
$$

Therefore, f admits a global minimizer.
2. If X^{*} is a minimizer of f on \mathcal{O}, then $\mathrm{d} f\left(X^{*}\right)=0$. We first start computing the differential of f at X. Let $H \in \mathcal{O}$ such that $X+H \in \mathcal{O}$. Recall that $\phi: X \mapsto X^{-1}$ is differentiable and that its differential is

$$
\mathrm{d} \phi(X)(H)=-X^{-1} H X^{-1}
$$

Now, using the chain rule,

$$
\begin{aligned}
\mathrm{d} f(X)(H) & =\operatorname{Tr}\left(-X^{-1} H X^{-1}\right)+\operatorname{Tr}(A H) \\
& =\left\langle-\left(X^{-1}\right)^{2}+A, H\right\rangle
\end{aligned}
$$

It follows that $\mathrm{d} f\left(X^{*}\right)=0$ is equivalent to $-\left(X^{*-1}\right)^{2}+A=0$, i.e.,

$$
X^{*}=A^{-1 / 2}
$$

Remark : Since A is positive symetric, $A^{-1 / 2}$ is uniquely defined.
Finally, the optimal value of f is

$$
\begin{aligned}
F\left(X^{*}\right) & =\operatorname{Tr}\left(A^{1 / 2}\right)+\operatorname{Tr}\left(A^{1 / 2}\right) \\
& =2 \operatorname{Tr}\left(A^{1 / 2}\right)
\end{aligned}
$$

Exercise 8 (Penalty method).

Let $F: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a lower semi-continuous function, coercive on \mathbb{R}^{n}. Let C be a closed set of \mathbb{R}^{n} with $\operatorname{dom}(f) \cap C \neq \varnothing$. We seek to solve the constrained problem

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & F(x) \tag{P}\\
\text { s.t. } & x \in C .
\end{array}
$$

Let $R: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{+}$be a lower semi-continuous function such that

$$
R(x)=0 \quad \Longleftrightarrow \quad x \in C
$$

R is called penalty function as it assigns a positive cost to any point that is not in the constraint set C. Let $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ be a nondecreasing sequence of positive reals satisfying $\lim _{k \rightarrow+\infty} \gamma_{k}=+\infty$. We denote by $\left(\mathcal{P}_{k}\right)$ the following penalized problem :

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} F_{\gamma_{k}}(x):=F(x)+\gamma_{k} R(x) \tag{k}
\end{equation*}
$$

Show that:

1. For all $k \in \mathbb{N},\left(\mathcal{P}_{k}\right)$ has at least one solution x_{k}.
2. The sequence $\left(x_{k}\right)_{n \in \mathbb{N}}$ is bounded.
3. Any cluster point of $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a solution to (\mathcal{P}).
4. What can we say if F is strictly convex?

Correction.

1. Let $n \in \mathbb{N}$. Since R is positive and $\gamma_{k}>0$, we have

$$
\forall x \in \mathbb{R}^{n}, F_{\gamma_{k}}(x) \geqslant F(x)
$$

Thus $F_{\gamma_{k}}$ is coercive, l.s.c. and proper on the closed set C : there exists at least one solution to $\left(\mathcal{P}_{k}\right)$.
2. Let $\bar{x} \in C$. Then for all $n \geqslant 0, F_{\gamma_{k}}(\bar{x})=F(\bar{x})$. Moreover, by definition of x_{k},

$$
x_{k} \in \operatorname{lev}_{\leqslant F_{\gamma_{k}}(\bar{x})} F_{\gamma_{k}}=\operatorname{lev}_{\leqslant F(\bar{x})} F_{\gamma_{k}} \subset \operatorname{lev}_{\leqslant F(\bar{x})} F,
$$

last inclusion being a consequence of

$$
\forall x \in \mathbb{R}^{n}, F_{\gamma_{k}}(x) \geqslant F(x)
$$

Since F is coercive, $\operatorname{lev}_{\leqslant F(\bar{x})} F$ is bounded. Therefore $\left(x_{k}\right)_{k \in \mathbb{N}}$ is bounded.
3. Because R^{n} is of finite dimension, we can extract a subsequence $\left(x_{k_{j}}\right)_{j \in \mathbb{N}}$ converging to $x^{*} \in \mathbb{R}^{n}$. We must show that $\bar{x} \in C, F\left(x^{*}\right) \leqslant F(\bar{x})$ and $x^{*} \in C$.
\triangleright Show $\forall \bar{x} \in C, F\left(x^{*}\right) \leqslant F(\bar{x})$.
We have previously shown that for all $\bar{x} \in C$, for all $k \in \mathbb{N}$,

$$
F\left(x_{k_{j}}\right) \leqslant F(\bar{x})
$$

Since F is l.s.c.,

$$
F\left(x^{*}\right) \leqslant \underline{\lim } F\left(x_{k_{j}}\right) \leqslant F(\bar{x})
$$

\triangleright Show $x^{*} \in C$.
We have for all $j \in \mathbb{N}$,

$$
\begin{aligned}
F_{\gamma_{k_{j}}}\left(x_{k_{j}}\right) & =F\left(x_{k_{j}}\right)+\gamma_{k_{j}} R\left(x_{k_{j}}\right) \\
& =F_{\gamma_{0}}\left(x_{k_{j}}\right)+\left(\gamma_{k_{j}}-\gamma_{0}\right) R\left(x_{k_{j}}\right) \\
& \geqslant \inf F_{\gamma_{0}}+\left(\gamma_{k_{j}}-\gamma_{0}\right) R\left(x_{k_{j}}\right)
\end{aligned}
$$

thus

$$
\begin{aligned}
\forall \bar{x} \in C, 0 \leqslant R\left(x_{k_{j}}\right) & \leqslant \frac{F_{\gamma_{k_{j}}}\left(x_{k_{j}}\right)-\inf F_{\gamma_{0}}}{\gamma_{k_{j}}-\gamma_{0}} \\
& \leqslant \frac{F(\bar{x})-\inf F_{\gamma_{0}}}{\gamma_{k_{j}}-\gamma_{0}}
\end{aligned}
$$

Passing to the limit infinimum when $k \rightarrow+\infty$, the right hand side term goes to 0 and the left hand side one to $R\left(x^{*}\right)$ (because R is l.s.c.). It follows that

$$
R\left(x^{*}\right)=0
$$

This proves that $x^{*} \in C$.
Finally x^{*} is a solution to (\mathcal{P}).
4. If F is strictly convex, there is an unique solution to problem (\mathcal{P}). Hence, $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a bounded sequence with a single cluster point. We can conclude that $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges.

Optimization - Exercises

Day 2

Exercise 1 (Convergence fixed step gradient descent algorithm).

For all $x \in \mathbb{R}^{n}$ we define the function f by

$$
f(x)=\frac{1}{2}\langle A x, x\rangle-\langle b, x\rangle,
$$

where $A \in \mathcal{S}_{n}^{++}(\mathbb{R})$, with eigenvalues $\left(\lambda_{i}\right)_{1 \leqslant i \leqslant n}$ verifying

$$
0<\lambda_{1} \leqslant \ldots \leqslant \lambda_{n}
$$

and $b \in \mathbb{R}^{n}$. It has already been seen in exercise 4 that f admits a unique minimizer x^{*}, which is the solution to the linear system $A x=b$.
The fixed step gradient descent algorithm is given by

$$
\left\{\begin{array}{l}
x_{0} \in \mathbb{R}^{n} \\
x_{k+1}=x_{k}-\gamma \nabla f\left(x_{k}\right)
\end{array}\right.
$$

Show the algorithm converges to x^{*} for any step $\left.\gamma \in\right] 0, \frac{2}{\lambda_{n}}[$. Give the step γ that ensures the fastest convergence.

Correction. Recall $\|\cdot\|$ denotes the euclidian norm of \mathbb{R}^{n}. Let $k \in \mathbb{N}^{*}$. By definition of $\left(x_{k}\right)_{k \in \mathbb{N}}$

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\| & =\left\|x_{k}-\gamma \nabla f\left(x_{k}\right)-x^{*}\right\| \\
& =\left\|\left(x_{k}-x^{*}\right)-\left(\gamma \nabla f\left(x_{k}\right)-\gamma \nabla f\left(x^{*}\right)\right)\right\|,
\end{aligned}
$$

since x^{*} verifies $\nabla f\left(x^{*}\right)=0$. It follows that

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\| & =\left\|\left(x_{k}-x^{*}\right)-\gamma\left(A x_{k}-A x^{*}\right)\right\| \\
& =\left\|\left(\mathrm{I}_{n}-\gamma A\right)\left(x_{k}-x^{*}\right)\right\| \\
& \leqslant\left\|\mathrm{I}_{n}-\gamma A\right\|\left\|x_{k}-x^{*}\right\| .
\end{aligned}
$$

Since $\mathrm{I}_{n}-\gamma A$ is symmetric, $\left\|\mathrm{I}_{n}-\gamma A\right\|=\rho\left(\mathrm{I}_{n}-\gamma A\right)$, where $\rho(X)=$ $\sup \{|\lambda|, \lambda$ eigenvalue of $X\}$. Hence

$$
\left\|\mathrm{I}_{n}-\gamma A\right\|=\max _{1 \leqslant j \leqslant n}\left\{\left|1-\gamma \lambda_{j}\right|\right\}
$$

Now if $\gamma \in] 0, \frac{2}{\lambda_{n}}[$, we easily show that for all $i \in\{1, \ldots, n\}$

$$
1>1-\gamma \lambda_{i}>-1
$$

i.e.

$$
\left|1-\gamma \lambda_{i}\right|<1
$$

Then

$$
\left\|\mathrm{I}_{n}-\gamma A\right\|<1
$$

By recurrence

$$
\left\|x_{k}-x^{*}\right\| \leqslant\left\|\mathrm{I}_{n}-\gamma A\right\|^{k}\left\|x_{0}-x^{*}\right\| \underset{k \rightarrow+\infty}{\longrightarrow} 0
$$

which proves the algorithm converges.
$\underline{\text { Best step } \gamma}$. To find the best step $\gamma \in] 0, \frac{2}{\lambda_{n}}[$, we first note that

$$
\left\|\mathrm{I}_{n}-\gamma A\right\|=\max \left\{\left|1-\gamma \lambda_{1}\right|,\left|1-\gamma \lambda_{n}\right|\right\}
$$

Then, drawing the function $\gamma \mapsto \max \left\{\left|1-\gamma \lambda_{1}\right|,\left|1-\gamma \lambda_{n}\right|\right\}$, we observe the minimum is reached at $\gamma=\frac{1}{\lambda_{1}+\lambda_{n}}$. Indeed, the intersection point $\gamma_{o p t}$ of the line $\gamma \mapsto 1-\gamma \lambda_{1}$ with the line $\gamma \mapsto \gamma \lambda_{n}-1$ can be found solving

$$
1-\gamma \lambda_{1}=\gamma \lambda_{n}-1
$$

This value of γ ensures the fastest convergence.

Exercise 2 (Convergence of Uzawa method).

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a differentiable α-strongly convex function and let $C \in \mathbb{R}^{m \times n}, d \in \mathbb{R}^{m}$. We
propose to study the convergence of Uzawa method towards a solution to the following problem :

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \tag{P}\\
\text { subject to } & C x \leqslant d,
\end{array}
$$

where the set $\left\{x \in \mathbb{R}^{N} \mid C x \leqslant d\right\}$ is assumed to be nonempty. Let $\rho>0$. Uzawa algorithm generates sequences $\left(x_{k}\right)_{k \in \mathbb{N}} \in\left(\mathbb{R}^{n}\right)^{\mathbb{N}}$ and $\left(\lambda_{k}\right)_{k \in \mathbb{N}} \in\left(\mathbb{R}^{m}\right)^{\mathbb{N}}$ according to the following iterations :

$$
\left\{\begin{array}{l}
x_{k}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)+\left\langle\lambda_{k}, C x-d\right\rangle, \\
\lambda_{k+1}=\max \left(\lambda_{k}+\rho\left(C x_{k}+d\right), 0\right) .
\end{array}\right.
$$

1. Explain why Problem (\mathcal{P}) admits a unique solution and why the algorithm is well defined.
2. (i) Write the Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}$ for Problem (\mathcal{P}).
(ii) Show that for any $x \in \mathbb{R}^{n}$,

$$
\left(\lambda^{*}=\underset{\lambda \in[0,+\infty)^{m}}{\operatorname{argmax}} \mathcal{L}(x, \lambda)\right) \quad \Longleftrightarrow \quad\left((\forall \rho>0) \quad \lambda^{*}=\mathrm{p}_{+}\left(\lambda^{*}+\rho(C x-d)\right)\right),
$$

where p_{+}denotes the projection on $[0,+\infty)^{m}$.
(iii) Let $\left(x^{*}, \lambda^{*}\right)$ be a saddle point of \mathcal{L}. Show that the following holds :

$$
\left\{\begin{array}{l}
\nabla f\left(x_{k}\right)-\nabla f\left(x^{*}\right)+C^{\top}\left(\lambda_{k}-\lambda\right)=0 \\
\left\|\lambda_{k+1}-\lambda^{*}\right\| \leqslant\left\|\lambda_{k}-\lambda^{*}+\rho C\left(x_{k}-x^{*}\right)\right\| .
\end{array}\right.
$$

3. Using (\star), show the convergence of the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ to x^{*} when ρ satisfies

$$
\begin{equation*}
0<\rho<\frac{2 \alpha}{\|C\|^{2}} . \tag{**}
\end{equation*}
$$

Correction.

1. f is strongly convex, continuous, and the set $\left\{x \in \mathbb{R}^{N} \mid C x \leqslant d\right\}$ is nonempty, closed. Therefore, $\operatorname{Problem}(\mathcal{P})$ admits a unique solution.
If you don't already know this result, it can easily be proven the following way, using the differentiability of f.

- Existence. The strong convexity of f implies that for all $(x, y) \in\left(\mathbb{R}^{n}\right)^{2}$ (see Exercise 3 in class notes),

$$
\begin{aligned}
f(x) & \geqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{\alpha}{2}\|x-y\|^{2}, \\
& \geqslant f(y)-\|\nabla f(y)\|\|x-y\|+\frac{\alpha}{2}\|x-y\|^{2},
\end{aligned}
$$

where we used Cauchy-Schwarz inequality. The minoring term is a polynomial function of degree 2 with a positive dominant coefficient. We deduce that f is coercive. Since the set $\left\{x \in \mathbb{R}^{N} \mid C x \leqslant d\right\}$ is nonempty, and closed, the existence of a global minimizer follows from the course.

- Unicity. A strongly convex function is strictly convex.

2. (i) For all $(x, \lambda) \in \mathbb{R}^{n} \times[0,+\infty)^{m}$,

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top}(C x-d) .
$$

(ii) Let $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
&\left(\lambda^{*}=\underset{\lambda \in[0,+\infty)^{m}}{\operatorname{argmax}} \mathcal{L}(x, \lambda)\right) \Longleftrightarrow \\
& \Longleftrightarrow \text { Euler } \\
&\left.\Longleftrightarrow \forall \lambda \in[0,+\infty)^{m} \quad\left\langle\nabla_{2} \mathcal{L}\left(x, \lambda^{*}\right), \lambda-\lambda^{*}\right\rangle \leqslant 0\right) \\
& \Longleftrightarrow \\
& \Longleftrightarrow\left(\forall \lambda \in[0,+\infty)^{m}, \forall \rho>0 \quad\left\langle\rho(C x-d), \lambda-\lambda^{*}\right\rangle \leqslant 0\right) \\
& \Longleftrightarrow \text { proj. } \\
&\left(\forall \rho>0 \quad \lambda^{*}=\mathrm{p}_{+}\left(\lambda^{*}+\rho(C x-d)\right)\right) .
\end{aligned}
$$

(iii) Since $\left(x^{*}, \lambda^{*}\right)$ is a saddle point of \mathcal{L}, the following holds :

$$
x^{*}=\inf _{x \in \mathbb{R}^{n}} \mathcal{L}\left(x, \lambda^{*}\right) \quad \text { and } \quad \lambda^{*}=\sup _{\lambda \geqslant 0} \mathcal{L}\left(x^{*}, \lambda\right) .
$$

We deduce from the previous question that

$$
\left\{\begin{array}{l}
\nabla f\left(x^{*}\right)+C^{\top} \lambda^{*}=0 \\
\lambda^{*}=\mathrm{p}_{+}\left(\lambda^{*}+\rho\left(C x^{*}-d\right)\right)
\end{array}\right.
$$

It is clear from the definition of the algorithm that we have similar relations for the iterates :

$$
\left\{\begin{array}{l}
\nabla f\left(x_{k}\right)+C^{\top} \lambda_{k}=0 \\
\lambda_{k+1}=\mathrm{p}_{+}\left(\lambda_{k}+\rho\left(C x_{k}-d\right)\right)
\end{array}\right.
$$

Finally, combining these inequalities and recalling that the projection operator p_{+}is 1 -Lipschitz, we obtain (\star).
3. For all $k \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\lambda_{k+1}-\lambda^{*}\right\|^{2} & \leqslant\left\|\lambda_{k}-\lambda^{*}+\rho C\left(x_{k}-x^{*}\right)\right\|^{2} \\
& =\left\|\lambda_{k}-\lambda^{*}\right\|^{2}+\rho^{2}\left\|C\left(x_{k}-x^{*}\right)\right\|^{2}+2 \rho\left\langle C^{\top}\left(\lambda_{k}-\lambda^{*}\right), x_{k}-x^{*}\right\rangle \\
& =\left\|\lambda_{k}-\lambda^{*}\right\|^{2}+\rho^{2}\left\|C\left(x_{k}-x^{*}\right)\right\|^{2}+2 \rho\left\langle\nabla f\left(x^{*}\right)-\nabla f\left(x_{k}\right), x_{k}-x^{*}\right\rangle
\end{aligned}
$$

Now, since f is α-strongly convex,

$$
\forall(x, y) \in\left(\mathbb{R}^{n}\right)^{2} \quad\langle\nabla f(x)-\nabla f(y), x-y\rangle \geqslant \alpha\|x-y\|^{2}
$$

Therefore,

$$
\begin{aligned}
\left\|\lambda_{k+1}-\lambda^{*}\right\|^{2} & \leqslant\left\|\lambda_{k}-\lambda^{*}\right\|^{2}+\rho^{2}\|C\|^{2}\left\|x_{k}-x^{*}\right\|^{2}-\alpha 2 \rho\left\|x_{k}-x^{*}\right\|^{2} \\
& =\left\|\lambda_{k}-\lambda^{*}\right\|^{2}+\rho\left(\rho\|C\|^{2}-2 \alpha\right)\left\|x_{k}-x^{*}\right\|^{2}
\end{aligned}
$$

Therefore, when the condition $(\star \star)$ is met, the sequence $\left(\left\|\lambda_{k}-\lambda^{*}\right\|\right)_{k \in \mathbb{N}}$ is decreasing and bounded from below, thus it converges. It follows that $\left\|\lambda_{k}-\lambda^{*}\right\|^{2}-\left\|\lambda_{k+1}-\lambda^{*}\right\|^{2} \underset{k \rightarrow+\infty}{\longrightarrow} 0$ and

$$
\rho\left(2 \alpha-\rho\|C\|^{2}\right)\left\|x_{k}-x^{*}\right\| \leqslant\left\|\lambda_{k}-\lambda^{*}\right\|^{2}-\left\|\lambda_{k+1}-\lambda^{*}\right\|^{2} \underset{k \rightarrow+\infty}{\longrightarrow} 0
$$

Additional remarks.

- If problem (\mathcal{P}) is feasible and $\left(x^{*}, \lambda^{*}\right)$ is a saddle point of \mathcal{L}, then x^{*} is a solution to the primal problem (\mathcal{P}).
- Let x^{*} be a solution to the primal problem (\mathcal{P}). Then, for a convex problem (convex objective function + affine constraint functions) for which the constraints are qualified (Slater), there exists a $\lambda^{*} \in[0,+\infty)^{m}$ such that $\left(x^{*}, \lambda^{*}\right)$ is a saddle point of \mathcal{L}. See class notes, page 11.

Exercise 3 (Optimization with equality constraints).

Find the points (x, y, z) de \mathbb{R}^{3} which belong to H_{1} and H_{2} and which are the closest to the origin.

$$
\begin{aligned}
& \left(H_{1}\right): 3 x+y+z=5, \\
& \left(H_{2}\right): x+y+z=1 .
\end{aligned}
$$

1. Write the problem as an optimization problem.
2. What can you say about existence of solutions? Unicity?
3. Solve the optimization problem using the Slater conditions.

Correction.

1. We can write the problem as

$$
\begin{array}{ll}
\underset{(x, y, z) \in \mathbb{R}^{3}}{\operatorname{minimize}} & f(x, y, z) \\
\text { subject to } & g_{1}(x, y, z)=0 \\
& g_{2}(x, y, z)=0,
\end{array}
$$

with $f(x, y, z):=x^{2}+y^{2}+z^{2}, g_{1}(x, y, z):=3 x+y+z-5$ and $g_{2}(x, y, z):=x+y+z-1$.
2. Let

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid g_{1}(x, y, z)=0 \text { and } g_{2}(x, y, z)=0\right\} .
$$

The problem is feasible because $\operatorname{dom}(f) \cap C \neq \varnothing$ (notice $(2,0,-1) \in C$). Moreover, fonction f is coercive, lower semi-continuous on the closed set C, hence there exists at least one global minimizer. Finally, f is strictly convex on the convex set C, the minimizer is therefore unique.
3 . $-f$ is convex, continuously differentiable,

- g_{1} et g_{2} are affine,
- Slater condition holds : consider the point $(\bar{x}, \bar{y}, \bar{z})=(2,0,-1)$.

We deduce from KKT theorem in the convexe case (see page 11 in the course) that (x, y, z) is a minimizer of f over C if, and only if, there exists $\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}$ such that

$$
\nabla f(x, y, z)+\mu_{1} \nabla g_{1}(x, y, z)+\mu_{2} \nabla g_{2}(x, y, z)=0, \quad \text { (Stationarity condition) }
$$

and

$$
\begin{equation*}
g_{1}(x, y, z)=0 \quad \text { et } \quad g_{2}(x, y, z)=0 . \tag{Constraints}
\end{equation*}
$$

These two conditions are equivalent to the following system of equations

$$
\begin{cases}2 x+3 \mu_{1}+\mu_{2} & =0 \\ 2 y+\mu_{1}+\mu_{2} & =0 \\ 2 z+\mu_{1}+\mu_{2} & =0 \\ 3 x+y+z & =5 \\ x+y+z & =-1 .\end{cases}
$$

The unique solution of this system is

$$
\begin{cases}x & =0 \\ y & =-1 / 2 \\ z & =-1 / 2 \\ \mu_{1} & =-7 / 2 \\ \mu_{2} & =9 / 2 .\end{cases}
$$

Conclusion : the unique minimizer of f over C is

$$
(\hat{x}, \hat{y}, \hat{z})=(2,-1 / 2,-1 / 2)
$$

Exercise 4 (Optimization with inequality constraints).

Solve the following optimization problem :

$$
\begin{array}{ll}
\underset{(x, y) \in \mathbb{R}^{2}}{\operatorname{minimize}} & x^{4}+3 y^{4} \\
\text { subject to } & x^{2}+y^{2} \geqslant 1
\end{array}
$$

Correction. Let $f(x, y):=x^{4}+3 y^{4}, h(x, y):=-x^{2}-y^{2}+1$ and

$$
C=\left\{x \in \mathbb{R}^{2} \mid h(x, y) \leqslant 0\right\} .
$$

1. The problem is feasible since $C \cap \operatorname{dom}(f) \neq \varnothing$. Function f is coercive since

$$
\begin{aligned}
f(x, y) & \geqslant\left(2 x^{2}-1\right)+3\left(y^{2}-1\right) \\
& \geqslant 2\|(x, y)\|^{2}-4 \underset{\|(x, y)\| \rightarrow+\infty}{\longrightarrow}+\infty .
\end{aligned}
$$

Moreover f is $l . s . c$ on the closed set C : this ensures the existence of global minimizer to f on C.
\triangle We cannot say anything about the unicity of the solution even though f is strictly convex on \mathbb{R}^{n}, because C is not convex.
2. To find the solution(s) to the problem, we are going to apply KKT theorem. It will give us a necessary optimality condition.

- f and h are continuously differentiable.
- The Mangasarian Fromovitz qualification of constraints holds for all $(x, y) \in C$ because $\nabla h(x, y)=(2 x, 2 y) \neq 0$ for all $(x, y) \in C$.
The hypothesis of KKT theorem are verified. Let x be a local minimizer of f on C : there exists $\lambda \in \mathbb{R}^{+}$such that

$$
\nabla f(x)+\lambda \nabla h(x)=0,
$$

(Stationarity condition)
and

$$
\lambda h(x)=0, \quad \text { (Complementary slackness condition) }
$$

and

$$
h(x) \leqslant 0 .
$$

(Constraints)
These three conditions are equivalent to

$$
\begin{cases}4 x^{3}-2 \lambda x & =0 \\ 12 y^{3}-2 \lambda y & =0 \\ \lambda\left(x^{2}+y^{2}-1\right) & =0 \\ x^{2}+y^{2} & \geqslant 1 .\end{cases}
$$

If $\lambda=0$, there is no solution to this system. Hence $\lambda>0$ and the system is equivalent to

$$
\left\{\begin{array}{l}
4 x^{3}-2 \lambda x=0 \tag{*}\\
12 y^{3}-2 \lambda y=0 \\
x^{2}+y^{2}-1=0
\end{array}\right.
$$

The first two equations of (\star) give the following couples $(x, y) \in \mathbb{R}^{2}$

$$
\begin{aligned}
& x \in\left\{ \pm \sqrt{\frac{\lambda}{2}}, 0\right\} \\
& y \in\left\{ \pm \sqrt{\frac{\lambda}{6}}, 0\right\} .
\end{aligned}
$$

Considering now the third equation, we deduce the solutions to the system (\star) are the couples $(x, y) \in \mathbb{R}^{2}$

$$
\begin{align*}
& \left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}\right) \tag{1}\\
& (\pm 1,0) \tag{2}\\
& (0, \pm 1) . \tag{3}
\end{align*}
$$

We now need to select among these couples those who are global minimizers, that is to say those who give the smallest value of f.
\triangleright Among couples (x, y) of the form $(1), f(x, y)=\frac{9}{16}+3 \frac{1}{16}=\frac{3}{4}$.
\triangleright Among couples (x, y) of the form (2), $f(x, y)=1$.
\triangleright Among couples (x, y) of the form $(3), f(x, y)=3$.
Conclusion : the solutions to the optimization problem are the couples

$$
(x, y)=\left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}\right)
$$

Exercise 5 (Optimization with equality and inequality constraints).

Let $f: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be defined by

$$
f\left(p_{1}, \ldots, p_{k}\right)=\sum_{i=1}^{k} p_{i}^{2} .
$$

Maximize f on the simplex Λ_{k} of \mathbb{R}^{k}

$$
\Lambda_{k}:=\left\{p=\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{R}^{k} \mid p_{i} \geqslant 0 \text { for all } i, \text { and } \sum_{i=1}^{k} p_{i}=1\right\}
$$

Correction.

1. We start by showing the existence of solutions to the problem. The function f is continuous on Λ_{k} and Λ_{k} is compact : indeed,

$$
\left.\left.\Lambda_{k}=\left(\bigcap_{i=1}^{k} h_{i}^{-1}(]-\infty, 0\right]\right)\right) \bigcap g^{-1}(\{0\})
$$

where for any $i \in\{1, \ldots, k\}$, for any $p \in \mathbb{R}^{k}$,

$$
\begin{aligned}
& h_{i}(p)=-p_{i} \\
& g(p)=\sum_{i=1}^{k} p_{i}-1
\end{aligned}
$$

So Λ_{k} is closed. Moreover Λ_{k} is bounded because it is included in $\left\{p=\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{R}^{k} \mid 0 \leqslant p_{i} \leqslant 1\right\}$.
We deduce that f reaches its maximum on Λ_{k}.
2. Let us find the solutions to this problem.
$\triangleright f,\left(h_{i}\right)_{1 \leqslant i \leqslant k}$ and g are continuously differentiable,
\triangleright Mangasarian-Fromovitz's constraint qualification. We check that the constraints are qualified at all $p \in \Lambda_{k}$. Let $p \in \Lambda_{k}$. Denote

$$
J(p)=\left\{i \in\{1, \ldots, k\} \mid h_{i}(p)=0\right\}=\left\{i \in\{1, \ldots, k\} \mid p_{i}=0\right\}
$$

Since $(0, \ldots, 0) \notin \Lambda_{k}$, necessarily, there exists $\ell \in\{1, \ldots, k\}$ such that $p_{\ell} \neq 0$. Set $z \in \mathbb{R}^{k}$ with $z_{i}=1$ if $i \neq \ell, z_{\ell}=-(k-1)$. Then

$$
\begin{gathered}
\langle\nabla g(p), z\rangle=0 \\
\forall j \in J(p),\left\langle\nabla h_{j}(p), z\right\rangle<0 .
\end{gathered}
$$

The constraints are therefore qualified at p.
Let $p \in \mathbb{R}^{k}$ be a local minimum of $-f$ on Λ_{k}. According to the KKT theorem, there exist $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in\left(\mathbb{R}^{+}\right)^{k}$ and $\mu \in \mathbb{R}$ such that

$$
-\nabla f(p)+\mu \nabla g(p)+\sum_{j=1}^{k} \lambda_{j} \nabla h_{j}(p)=0, \quad \text { (Stationarity condition) }
$$

and

$$
\forall j \in\{1, \ldots, q\}, \lambda_{j} h_{j}(p)=0, \quad \text { (Complementary slackness) }
$$

and

$$
\begin{cases} & g(p)=0 \\ \forall j \in\{1, \ldots, k\}, & h_{j}(p) \leqslant 0\end{cases}
$$

(Constraints)
These three conditions boil down to the following system

$$
\left\{\begin{array}{l}
\forall i \in\{1, \ldots, k\},-2 p_{i}-\lambda_{i}+\mu=0 \\
\forall i \in\{1, \ldots, k\}, \quad \lambda_{i} p_{i}=0 \\
\forall i \in\{1, \ldots, k\}, \quad p_{i} \geqslant 0 \\
\sum_{i=1}^{k} p_{i}=1
\end{array}\right.
$$

Let $J=\left\{i \in\{1, \ldots, k\} \mid p_{i}=0\right\}$. Notice again that $|J| \neq k$ because $p=(0, \ldots, 0)$ is not in Λ_{k}. The system of equations implies that

$$
\sum_{i=1}^{n}\left(\lambda_{i}-\mu\right)=-2
$$

i.e.

$$
\begin{equation*}
\sum_{i \in J} \lambda_{i}=-2+k \mu \tag{4}
\end{equation*}
$$

Moreover, for all $i \in J, p_{i}=0$ so from the first equation of the system, $i=\mu$. Thus (4) is rewritten

$$
|J| \mu=-2+k \mu
$$

i.e.

$$
\mu=\frac{2}{k-|J|}
$$

We deduce

$$
p_{i}= \begin{cases}0 & \text { if } i \in J \tag{5}\\ \frac{1}{k-|J|} & \text { otherwise }\end{cases}
$$

Thus the global maximizers of f on Λ_{k} are to be sought among the p of the form (5), with $|J| \in\{0, \ldots, k-1\}$. Let us select the p of this form maximizing f. We have

$$
\begin{aligned}
f(p) & =\sum_{i \notin J} p_{i}^{2} \\
& =\left|J^{c}\right| \times \frac{1}{(k-|J|)^{2}} \\
& =(k-|J|) \times \frac{1}{(k-|J|)^{2}} \\
& =\frac{1}{k-|J|} .
\end{aligned}
$$

Thus f is maximal if $|J|=k-1$. Finally, the solutions of the optimization problem are $\left(e_{i}\right)_{(1 \leqslant i \leqslant k)}$, where e_{i} denotes the i-th vector of the canonical basis of \mathbb{R}^{k}. In other words, the solutions are vertices of the simplex.

Exercise 6 (Characterization of $\mathrm{SO}_{n}(\mathbb{R})$).

We denote $\mathrm{SO}_{n}(\mathbb{R})=\left\{M \in \mathbb{R}^{n \times n} \mid M\right.$ is orthogonal and $\left.\operatorname{det}(M)=1\right\}$ and $\mathrm{SL}_{n}(\mathbb{R})=\{M \in$ $\left.\mathbb{R}^{n \times n} \mid \operatorname{det}(M)=1\right\}$. Show $\mathrm{SO}_{n}(\mathbb{R})$ is exactly composed of the matrices of $\mathrm{SL}_{n}(\mathbb{R})$ which minimize the Euclidean norm of $\mathbb{R}^{n \times n}$, i.e.

$$
\forall M \in \mathbb{R}^{n \times n},\|M\|=\sqrt{\operatorname{Tr}\left(M^{\top} M\right)} .
$$

Correction 1. We must show that

$$
\mathrm{SO}_{n}(\mathbb{R})=\left\{M \in \mathbb{R}^{n \times n} \mid\|M\|^{2}=\inf _{A \in \mathrm{SL}_{n}(\mathbb{R})}\|A\|^{2}\right\} .
$$

\triangleright Existence of a minimizer. Let $g: M \mapsto \operatorname{det}(M)-1$. Since g is continuous, $\mathrm{SL}_{n}(\mathbb{R})=$ $g^{-1}(\{0\})$ is closed in $\mathbb{R}^{n \times n}$. In addition, $f: M \mapsto\|M\|^{2}$ is continuous and coercive. Thus f admits a minimizer on $\mathrm{SL}_{n}(\mathbb{R})$.
\triangleright Characterize the minimizers. Let M be a minimizer of f on $\mathrm{SL}_{n}(\mathbb{R})$. Then form the Lagrange multiplier theory, there exists $\mu \in \mathbb{R}$ such that

$$
\nabla f(M)=\mu \nabla g(M) .
$$

Using the differential of the determinant function, it follows that:

$$
\begin{equation*}
2 M=\mu \operatorname{Com}(M), \tag{6}
\end{equation*}
$$

where $\operatorname{Com}(M)$ denotes the comatrix. Applying det on both sides and using $\operatorname{det}(M)=$ 1 yields

$$
\begin{aligned}
2^{n} & =\mu^{n} \operatorname{det}(\operatorname{Com}(M)) \\
& =\mu^{n} \operatorname{det}\left(\left(M^{-1}\right)^{\top}\right) \\
& =\mu^{n} \frac{1}{\operatorname{det}(M)} \\
& =\mu^{n} .
\end{aligned}
$$

Hence $\mu=2$ or $\mu=-2$. Now, multiplying (6) by M^{\top}, we obtain :

$$
\begin{aligned}
2 M M^{\top} & =\mu \operatorname{Com}(M) M^{\top} \\
& =\mu \mathrm{I}_{n} .
\end{aligned}
$$

Taking the trace on both sides implies that $\mu>0$. Finally $\mu=2$, and $M M^{\top}=\mathrm{I}_{n}$. Thus $M \in \mathrm{SO}_{n}(\mathbb{R})$.
\triangleright Check. Conversely, let $M \in \mathrm{SO}_{n}(\mathbb{R})$. Then

$$
\|M\|^{2}=\operatorname{Tr}\left(M^{\top} M\right)=n
$$

Thus f in constant on $\mathrm{SO}_{n}(\mathbb{R})$. Since we know f has at least one minimizer in $\mathrm{SO}_{n}(\mathbb{R})$, we deduce that any matrix of $\mathrm{SO}_{n}(\mathbb{R})$ is a minimizer of f.

